(本小題滿分10分)河上有一拋物線型拱橋,當(dāng)水面距拱頂5時(shí),水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問水面上漲到與拋物線拱頂相距多少米時(shí),小船恰好能通行。

2

解析試題分析:建立直角坐標(biāo)系,設(shè)拋物線型拱橋方程為,過A(-4,-5),B(4,-5),,由于小船寬4,當(dāng)時(shí),,即當(dāng)船頂距拋物線拱頂為時(shí),小船恰好能通過。又載貨后,船露出水面上的部分高。當(dāng)水面距拋物線拱頂距離時(shí),小船恰好能通行。
答:當(dāng)水面上漲到與拋物線拱頂相距2時(shí),小船恰好能通行。
考點(diǎn):拋物線的實(shí)際應(yīng)用。
點(diǎn)評:本題主要考查了拋物線的實(shí)際應(yīng)用,是中檔題.解題時(shí)要認(rèn)真審題,恰當(dāng)?shù)亟⒆鴺?biāo)系,合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.

(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓過橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)與圓相切 ,與橢圓相交于兩點(diǎn)記
(1)求橢圓的方程
(2)求的取值范圍;
(3)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點(diǎn),是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)是橢圓上任兩點(diǎn),且直線的斜率分別為、,若存在常數(shù)使,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求與橢圓有共同焦點(diǎn),且過點(diǎn)(0,2)的雙曲線方程,并且求出這條雙曲線的實(shí)軸長、焦距、離心率以及漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,且,
點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過的直線與橢圓相交于兩點(diǎn),且的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸的負(fù)半軸上,過點(diǎn)作直線與拋物線交于A,B兩點(diǎn),且滿足,
(1)求拋物線的方程
(2)當(dāng)拋物線上的一動點(diǎn)P從A運(yùn)動到B時(shí),求面積的的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)在正三角形內(nèi)有一動點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案