為了更好地開展社團活動,豐富同學們的課余生活,現(xiàn)用分層抽樣的方法從“模擬聯(lián)合國”,“街舞”,“動漫”,“話劇”四個社團中抽取若干人組成社團指導小組,有關數(shù)據(jù)見下表:(單位:人)

(1)求的值;
(2)若從“動漫”與“話劇”社團已抽取的人中選2人擔任指導小組組長,求這2人分別來自這兩個社團的概率.

(1) ;(2).

解析試題分析:本題考查隨機事件的概率和分層抽樣等基礎知識,考查運用概率知識解決簡單實際問題的能力.第一問,考查分層抽樣,先利用表格找到抽取比例,本問比較簡單;第二問,利用第一問的結(jié)論,求出任選2人的所有基本事件,然后從中選出符合題意的,最后兩個數(shù)相除即可.
試題解析:(1)由表可知抽取比例為,故.(3分)
(2)設“動漫”4人分別為;“話劇”2人分別為,則從中任選2人的所有基本事件為
,
共15個,其中2人分別來自這兩個社團的基本事件為共8個,
所以這2人分別來自這兩個社團的概率.(12分)
考點:1.分層抽樣;2.隨機事件的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

成都七中為綠化環(huán)境,移栽了銀杏樹2棵,梧桐樹3棵。它們移栽后的成活率分別為且每棵樹是否存活互不影響,求移栽的5棵樹中:
(1)銀杏樹都成活且梧桐樹成活2棵的概率;
(2)成活的棵樹的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)如圖所示,機器人海寶按照以下程序運行

1從A出發(fā)到達點B或C或D,到達點B、C、D之一就停止;
②每次只向右或向下按路線運行;
③在每個路口向下的概率;
④到達P時只向下,到達Q點只向右.
(1)求海寶過點從A經(jīng)過M到點B的概率,求海寶過點從A經(jīng)過N到點C的概率;
(2)記海寶到點B、C、D的事件分別記為X=1,X=2,X=3,求隨機變量X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(Ⅰ)兩數(shù)之和為5的概率;
(Ⅱ)兩數(shù)中至少有一個為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)因干旱缺水,政府向市民宣傳節(jié)約用水,并進行廣泛動員 三個月后,統(tǒng)計部門在一個小區(qū)隨機抽取了戶家庭,分別調(diào)查了他們在政府動員前后三個月的月平均用水量(單位:噸),將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)

動員前                                 動員后
(Ⅰ)已知該小區(qū)共有居民戶,在政府進行節(jié)水動員前平均每月用水量是噸,請估計該小區(qū)在政府動員后比動員前平均每月節(jié)約用水多少噸;
(Ⅱ)為了解動員前后市民的節(jié)水情況,媒體計劃在上述家庭中,從政府動員前月均用水量在范圍內(nèi)的家庭中選出戶作為采訪對象,其中在內(nèi)的抽到戶,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨立.假設該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數(shù)學期望;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

我校社團聯(lián)即將舉行一屆象棋比賽,規(guī)則如下:兩名選手比賽時,每局勝者得分,負者得分,比賽進行到有一人比對方多分或打滿局時結(jié)束.假設選手甲與選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負互不影響.
(Ⅰ)求比賽進行局結(jié)束,且乙比甲多得分的概率;
(Ⅱ)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個小球被取出的可能性相等.
(1)求取出的兩個球上標號為相鄰整數(shù)的概率;
(2)求取出的兩個球上標號之和能被3整除的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙丙三人商量周末去玩,甲提議去市中心逛街,乙提議去城郊覓秋,丙表示隨意。最終,商定以拋硬幣的方式?jīng)Q定結(jié)果。規(guī)則是:由丙拋擲硬幣若干次,若正面朝上則甲得一分乙得零分,反面朝上則乙得一分甲得零分,先得4分者獲勝,三人均執(zhí)行勝者的提議.記所需拋幣次數(shù)為.
⑴求=6的概率;
⑵求的分布列和期望.

查看答案和解析>>

同步練習冊答案