成都七中為綠化環(huán)境,移栽了銀杏樹2棵,梧桐樹3棵。它們移栽后的成活率分別為且每棵樹是否存活互不影響,求移栽的5棵樹中:
(1)銀杏樹都成活且梧桐樹成活2棵的概率;
(2)成活的棵樹的分布列與期望.

(1);(2)的分布列為:


0
1
2
3
4
5







解析試題分析:(1) “銀杏樹都成活且梧桐樹成活2棵”即“銀杏樹成活2棵”和 “梧桐樹恰好成活2棵”這兩個事件同時發(fā)生,因為這兩個事件相互獨立,所以獨立事件同時發(fā)生的概率公式便可知,將這兩個事件發(fā)生的概率相乘便得“銀杏樹都成活且梧桐樹成活2棵”這個事件的概率;
(2)因為一共有5棵樹,所以可能的取值為:.由概率公式求出的各個取值的概率,便得其分布列及期望.
試題解析:(1)設(shè)表示“銀杏樹都成活且梧桐樹成活2棵”
設(shè)表示“銀杏樹成活棵”;;
表示“梧桐樹成活棵”;;                        3分
                 5分
(2)可能的取值:
同理:;;
             7分
的分布列為:


0
1
2
3
4
5







                                                  10分
                            12分
考點:1、古典概型;2、隨機(jī)變量的分布列及其期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌


首次出現(xiàn)故
障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤
(萬元)
1
2
3
1.8
2.9
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.
(3)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機(jī)彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當(dāng)三球共線時,S=0;當(dāng)S最大時,中一等獎,當(dāng)S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.

(1)求甲一次游戲中能中獎的概率;
(2)設(shè)這個正六邊形的面積是6,求一次游戲中隨機(jī)變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)民生所望,相關(guān)部門對所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:

規(guī)定初查累計權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎勵,10分的獎勵18萬元;9分的獎勵8萬元;初查累計權(quán)重分?jǐn)?shù)為7分及其以下的停下運營并罰款1萬元;初查累計權(quán)重分?jǐn)?shù)為8分的要對不合格指標(biāo)進(jìn)行復(fù)查,最終累計權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運營,否則停業(yè)運營并罰款1萬元.
(1)求一家單位既沒獲獎勵又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學(xué)期望(獎勵為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一中食堂有一個面食窗口,假設(shè)學(xué)生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學(xué)生買飯所需的時間統(tǒng)計結(jié)果如下:

買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學(xué)生開始買飯時計時.
(Ⅰ)求第2分鐘末沒有人買晚飯的概率;
(Ⅱ)估計第三個學(xué)生恰好等待4分鐘開始買飯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4。
(Ⅰ)從袋中隨機(jī)抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為,求+2的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點制作(復(fù)賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復(fù)賽、決賽的概率分別是,,且各輪次通過與否相互獨立.
(I)設(shè)該選手參賽的輪次為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)對于(I)中的,設(shè)“函數(shù)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

淮南八公山某種豆腐食品是經(jīng)過A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、.已知每道工序的加工都相互獨立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進(jìn)入市場.
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了更好地開展社團(tuán)活動,豐富同學(xué)們的課余生活,現(xiàn)用分層抽樣的方法從“模擬聯(lián)合國”,“街舞”,“動漫”,“話劇”四個社團(tuán)中抽取若干人組成社團(tuán)指導(dǎo)小組,有關(guān)數(shù)據(jù)見下表:(單位:人)

(1)求的值;
(2)若從“動漫”與“話劇”社團(tuán)已抽取的人中選2人擔(dān)任指導(dǎo)小組組長,求這2人分別來自這兩個社團(tuán)的概率.

查看答案和解析>>

同步練習(xí)冊答案