【題目】給定橢圓C:(),稱圓心在原點O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,使得,與橢圓C都只有一個交點,且,分別交其“衛(wèi)星圓”于點M,N,證明:弦長為定值.
【答案】(1),;(2)證明見解析.
【解析】
(1)根據(jù)題意列出再結合即可解出,,從而得到橢圓C的方程和其“衛(wèi)星圓”方程;
(2) 根據(jù)分類討論,當有一條直線斜率不存在時(不妨假設無斜率),可知其方程為或,這樣可求出;當兩條直線的斜率都存在時,設經(jīng)過點與橢圓只有一個公共點的直線為,與橢圓方程聯(lián)立,由可得,所以線段應為“衛(wèi)星圓”的直徑,即,故得證.
(1)由條件可得:
解得,
所以橢圓的方程為,
衛(wèi)星圓的方程為
(2)①當,中有一條無斜率時,不妨設無斜率,
因為與橢圓只有一個公共點,則其方程為或,
當方程為時,此時與“衛(wèi)星圓”交于點和,
此時經(jīng)過點且與橢圓只有一個公共點的直線是
或,即為或,
∴
∴線段應為“衛(wèi)星圓”的直徑,
∴
②當,都有斜率時,設點,其中,
設經(jīng)過點與橢圓只有一個公共點的直線為,
則,
消去y得到,
∴
∴
所以,滿足條件的兩直線,垂直.
∴線段應為“衛(wèi)星圓”的直徑,∴
綜合①②知:因為,經(jīng)過點,又分別交“衛(wèi)星圓”于點,且,垂直,所以線段是“衛(wèi)星圓”的直徑,∴為定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、、成等比數(shù)列.
(1)求橢圓的離心率;
(2)判斷的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線是由兩個定點和點的距離之積等于的所有點組成的,對于曲線,有下列四個結論:①曲線是軸對稱圖形;②曲線上所有的點都在單位圓內(nèi);③曲線是中心對稱圖形;④曲線上所有點的縱坐標.其中,所有正確結論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,,點分別為的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求平面與平面所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),f′(x),g'(x)為其導函數(shù),當x<0時,f′(x)g(x)+f(x)g'(x)<0且g(﹣3)=0,則使得不等式f(x)g(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣3)B.(﹣3,0)C.(0,3)D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(a>b>0)的左、右焦點分別是F1,F2,焦距為2c,若直線y=(x+c)與橢圓交于M點,且滿足∠MF1F2=2∠MF2F1,則橢圓的離心率是 ( )
A. B. -1 C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體中,四邊形是正方形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com