【題目】如圖,在四棱錐中,在底面中, 的中點, 是棱的中點, = = = = = =.

(1)求證: 平面

(2)求證:平面底面;

(3)試求三棱錐的體積.

【答案】(1)見解析;(2)見解析;(3).

【解析】試題分析:(1)連接,交BQN,連接MN,證明即可,

(2)根據(jù)面面垂直的判定定理,先證明,即可,

(3)先證明平面,再根據(jù)==,即可解答.

試題解析:

(1) 如圖,連接,BQN,連接MN,

= ,的中點,

,,

四邊形是平行四邊形,

NBQ中點,

是棱的中點,

,

PA平面平面.

平面

(2)證明:

的中點

四邊形為平行四邊形,

.

,

由勾股定理可知,

,

,平面,

平面平面.

(3) 的中點,

,

平面平面,且平面平面,

平面,

是棱上的中點,

====.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,的首項,且滿足,,其中,設(shè)數(shù)列,的前項和分別為

Ⅰ)若不等式對一切恒成立,求

Ⅱ)若常數(shù)且對任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的條件下且同時滿足以下兩個條件:

ⅰ)若存在唯一正整數(shù)的值滿足;

恒成立.試問:是否存在正整數(shù),使得,若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點是圓上任意一點,軸的垂線,垂足為,若點在線段上,且滿足

(1)求點的軌跡的方程;

(2)設(shè)直線交于 兩點,點坐標(biāo)為,若直線, 的斜率之和為定值3,求證:直線必經(jīng)過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下結(jié)論:

①函數(shù)是奇函數(shù);

②存在實數(shù),使得;

③若是第一象限角且,則

是函數(shù)的一條對稱軸方程;

⑤函數(shù)的圖形關(guān)于點成中心對稱圖形.

其中正確的結(jié)論的序號是__________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.

(1)求此拋物線的方程;

(2)若此拋物線方程與直線相交于不同的兩點、,且中點橫坐標(biāo)為2,求的值.

【答案】(1);(2)2.

【解析】試題分析:

(1)由題意設(shè)拋物線方程為,則準(zhǔn)線方程為,解得,即可求解拋物線的方程;

(2)由消去,根據(jù),解得,得到,即可求解的值.

試題解析:

(1)由題意設(shè)拋物線方程為),其準(zhǔn)線方程為,

到焦點的距離等于到其準(zhǔn)線的距離,∴,∴,

∴此拋物線的方程為

(2)由消去,

∵直線與拋物線相交于不同兩點,則有

解得,

,解得(舍去).

∴所求的值為2.

型】解答
結(jié)束】
20

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為, 的中點,點在線段上.

(1)求證: 平面;

(2)如果三棱錐的體積為,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中(為坐標(biāo)原點),已知兩點,,且三角形的內(nèi)切圓為圓,從圓外一點向圓引切線,為切點。

(1)求圓的標(biāo)準(zhǔn)方程.

(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.

(3)已知點在圓上運動,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2))

(1)求證:;

(2),直線與平面所成的角為,求長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平面, , , 的中點.

(Ⅰ)證明: 平面

(Ⅱ)求多面體的體積;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案