【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.

(1)求此拋物線的方程;

(2)若此拋物線方程與直線相交于不同的兩點,且中點橫坐標為2,求的值.

【答案】(1);(2)2.

【解析】試題分析:

(1)由題意設(shè)拋物線方程為,則準線方程為,解得,即可求解拋物線的方程;

(2)由消去,根據(jù),解得,得到,即可求解的值.

試題解析:

(1)由題意設(shè)拋物線方程為),其準線方程為

到焦點的距離等于到其準線的距離,∴,∴

∴此拋物線的方程為

(2)由消去,

∵直線與拋物線相交于不同兩點、,則有

解得,

,解得(舍去).

∴所求的值為2.

型】解答
結(jié)束】
20

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為, 的中點,點在線段上.

(1)求證: 平面;

(2)如果三棱錐的體積為,求點到面的距離.

【答案】(1)證明見解析;(2)

【解析】試題分析:

(1)在平行四邊形中,得出,進而得到,證得底面,得出,進而證得平面

(2)由到面的距離為,所以 中點,即可求解的值.

試題解析:

證明:(1)在平行四邊形中,因為 ,

所以,由 分別為, 的中點,得,所以

側(cè)面底面,且, 底面

又因為底面,所以

又因為, 平面, 平面

所以平面

解:(2)到面的距離為1,所以, 中點,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積.弧田,由圓弧和其所對的弦所圍成.公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于米的弧田. 按照上述經(jīng)驗公式計算所得弧田面積與實際面積的誤差為_______平方米.(用“實際面積減去弧田面積”計算)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

(1) 求出4個人中恰有2個人去 參加甲游戲的概率;

(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動,每轉(zhuǎn)一圈,摩天輪上的點的起始位置在最低點處.

(1)已知在時刻距離地面的高度,(其中),求距離地面的高度;

(2)當離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園的全貌?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統(tǒng)計了她們的數(shù)學成績(成績均為整數(shù)且滿分為分),數(shù)學成績分組及各組頻數(shù)如下:

樣本頻率分布表:

分組

頻數(shù)

頻率

合計

(1)在給出的樣本頻率分布表中,求的值;

(2)估計成績在分以上(含分)學生的比例;

(3)為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲、乙兩同學恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,在底面中, 的中點, 是棱的中點, = = = = = =.

(1)求證: 平面

(2)求證:平面底面;

(3)試求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 中,過橢圓 右焦點 的直線交橢圓兩點 , 的中點,且 的斜率為 .

(1)求橢圓的標準方程;

(2)設(shè)過點 的直線 (不與坐標軸垂直)與橢圓交于 兩點,問:在 軸上是否存在定點 ,使得 為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點,PAB為等腰直角三角形,PA平面ABCD,PA=1.

(1)求證:直線AE平面PFC;

(2)求證:PB⊥FC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足

1)求數(shù)列的通項公式.

2)設(shè),求數(shù)列的前項和

查看答案和解析>>

同步練習冊答案