【題目】關于函數(shù),給出以下四個命題:(1)當時,單調(diào)遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程(為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號是____________.
【答案】(1)、(3)
【解析】
化簡函數(shù)的解析式,畫出函數(shù)的圖象,對四個命題逐一判斷即可.
,它的圖象如下圖所示:
命題(1):當時,在上單調(diào)遞增,在上單調(diào)遞減且沒有最值,故本命題是假命題;
命題(2):因為直線存在斜率,所以一定有實數(shù)解,故本命題是真命題;
命題(3):,所以函數(shù)是偶函數(shù),當有解時,若,該方程的解的個數(shù)為偶數(shù);若時,,只有一個解,故本命題是假命題;
命題(4):由(3)可知,函數(shù)是偶函數(shù),函數(shù)有最小值,最小值為零,故本命題是真命題.
故答案為:(1)、(3)
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:(),過原點的兩條直線和分別與交于點、和、,得到平行四邊形.
(1)當為正方形時,求該正方形的面積.
(2)若直線和關于軸對稱,上任意一點到和的距離分別為和,當為定值時,求此時直線和的斜率及該定值.
(3)當為菱形,且圓內(nèi)切于菱形時,求,滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為
(1)在曲線上任取一點,連接,在射線上取一點,使,求點軌跡的極坐標方程;
(2)在曲線上任取一點,在曲線上任取一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】棋盤上標有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時,游戲結束.設棋子位于第站的概率為.
(1)當游戲開始時,若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,,為側棱的中點.
(1)求證:平面;
(2)求異面直線與所成角的大。ńY果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.
(1)求橢圓的標準方程;
(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標為m,AB的弦長,并求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com