【題目】已知是拋物線上任意一點,,且點為線段的中點.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)若為點關(guān)于原點的對稱點,過的直線交曲線、 兩點,直線交直線于點,求證:

【答案】(Ⅰ) (Ⅱ)見證明

【解析】

(Ⅰ)設(shè),,根據(jù)中點坐標公式可得,代入曲線方程即可整理得到所求的軌跡方程;(Ⅱ)設(shè),設(shè),,將直線與曲線聯(lián)立可得;由拋物線定義可知,若要證得只需證明垂直準線,即軸;由直線的方程可求得,可將點橫坐標化簡為,從而證得軸,則可得結(jié)論.

(Ⅰ)設(shè),

中點

為曲線上任意一點 ,代入得:

的軌跡的方程為:

(Ⅱ)依題意得,直線的斜率存在,其方程可設(shè)為:

設(shè),

聯(lián)立得:,則

直線的方程為是直線與直線的交點

根據(jù)拋物線的定義等于點到準線的距離

在準線要證明,只需證明垂直準線

即證

的橫坐標:

軸成立 成立

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已如橢圓C:的兩個焦點與其中一個頂點構(gòu)成一個斜邊長為4的等腰直角三角形.

(1)求橢圓C的標準方程;

(2)設(shè)動直線l交橢圓CPQ兩點,直線OP,OQ的斜率分別為kk.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,底面是等腰三角形,且,側(cè)面 是菱形,,平面平面,點的中點.

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,

①求曲線在點處的切線方程;

②求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程與直線的極坐標方程;

(2)若射線與曲線交于點(不同于原點),與直線交于點,直線與極軸所在直線交于點.求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{}的首項a12,前n項和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項公式;

2)設(shè),,數(shù)列{}的前n項和為,

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)m,n(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內(nèi)行車里程(單位:公里)的測試結(jié)果.

(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

(Ⅱ)用分層抽樣的方法從行車里程在區(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)恒成立的實數(shù)的最大值

(2)設(shè),,且滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M分別相切于點B,D,圓分別相切于點CD

(1)若,求圓的半徑;(結(jié)果精確到0.1米)

(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

同步練習冊答案