【題目】在三棱柱中,底面是等腰三角形,且,側(cè)面 是菱形,,平面平面,點(diǎn)的中點(diǎn).

(1)求證:;

(2)求直線與平面所成角的正弦值.

【答案】(1) 證明見解析;(2)

【解析】

1)證明直線垂直所在的平面,從而證明;

2)以A為原點(diǎn),x軸正方向,y軸正方向,垂直平面ABC向上為z軸正方向建立平面直角坐標(biāo)系,設(shè),線面角為,可得面的一個(gè)法向量,,代入公式進(jìn)行求值.

(1)證明:在中,是直角,即,平面平面

平面平面,平面

平面,.

在菱形中,,連接

是正三角形,

∵點(diǎn)中點(diǎn),.

,.

,平面

.

(2)作G,連結(jié)

由(1)知平面,得到

,且,所以平面.

又因?yàn)?/span>平面,所以,

又平面平面,

于點(diǎn)H,平面,則即為所求線面角.

設(shè),

由已知得,

,

BM與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線。

(1)求曲線的方程;

(2)若,設(shè)過點(diǎn)的直線與曲線分別交于點(diǎn),其中,求證:直線必過軸上的一定點(diǎn)。(其坐標(biāo)與無(wú)關(guān))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全國(guó)第五個(gè)“扶貧日”到來(lái)之前,某省開展“精準(zhǔn)扶貧,攜手同行”的主題活動(dòng),某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部80,每人都走訪了若干貧困戶,按照分層抽樣,三鎮(zhèn)共選40名基層干部,統(tǒng)計(jì)他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5,,繪制成如圖所示的頻率分布直方圖.

(1)求這40人中有多少人來(lái)自鎮(zhèn),并估計(jì)三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)如果把走訪貧困戶達(dá)到或超過25戶視為工作出色,以頻率估計(jì)概率,三鎮(zhèn)的所有基層干部中隨機(jī)選取3,記這3人中工作出色的人數(shù)為,的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市自2014年至2019年每年年初統(tǒng)計(jì)得到的人口數(shù)量如表所示.

年份

2014

2015

2016

2017

2018

2019

人數(shù)(單位:萬(wàn))

2082

2135

2203

2276

2339

2385

(1)設(shè)第年的人口數(shù)量為(2014年為第1年),根據(jù)表中的數(shù)據(jù),描述該城市人口數(shù)量和2014年至2018年每年該城市人口的增長(zhǎng)數(shù)量的變化趨勢(shì);

(2)研究統(tǒng)計(jì)人員用函數(shù)擬合該城市的人口數(shù)量,其中的單位是年.假設(shè)2014年初對(duì)應(yīng),的單位是萬(wàn).設(shè)的反函數(shù)為,求的值(精確到0.1),并解釋其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)國(guó)際智能產(chǎn)業(yè)博覽會(huì)(智博會(huì))每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組年底,來(lái)自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國(guó)國(guó)際智博會(huì)服務(wù)的志愿者.

(1)若“嘉賓”小組需要2名志愿者,求這2人分別來(lái)自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示)

(2)若“法醫(yī)”小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用表示抽出志愿者來(lái)自重慶醫(yī)科大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求曲線處的切線方程;

2)函數(shù)在區(qū)間上有零點(diǎn),求的值;

3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到直線的距離比到定點(diǎn)的距離大1.

(1)求動(dòng)點(diǎn)的軌跡的方程.

(2)若為直線上一動(dòng)點(diǎn),過點(diǎn)作曲線的兩條切線,,切點(diǎn)為,的中點(diǎn).

①求證:軸;

②直線是否恒過一定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是拋物線上任意一點(diǎn),,且點(diǎn)為線段的中點(diǎn).

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)若為點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),過的直線交曲線、 兩點(diǎn),直線交直線于點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案