【題目】過函數(shù)的圖象上一點作傾斜角互補的兩條直線,分別與交與異于兩點.

1)求證:直線的斜率為定值;

2)如果,兩點的橫坐標均不大于0,求面積的最大值.

【答案】1)見解析;(26

【解析】

1)由題意易知直線的斜率存在且不為0,則可表示出的直線方程,與聯(lián)立求得的坐標,同理可得的坐標,進而求得的斜率;

2)設出直線的方程與聯(lián)立消去,利用判別式大于0求得的范圍,進而表示出三角形的面積為,利用換元法令,利用導數(shù)判斷單調性確定面積的最大值.

1)由題意易知直線的斜率存在且不為0,

可設直線方程為,即,

由于兩直線傾斜角互補,故直線的方程為,

,

,

,即,則,

,同理可得,

的斜率為,

即直線的斜率為定值.

2)設直線的方程為

,

,

A、B的橫坐標不大于零,

,,則

,

于是,點到直線的距離

的面積,

,,

,

,

求導可得上恒成立,

上單調遞增,則最大值為,

面積的最大值為6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:

①命題 ,則的否命題是假命題;

②命題 ,使 ,則

函數(shù) 為偶函數(shù)的充要條件;

④命題 ,使,命題 中,若 ,則,那么命題為真命題.

其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的右準線方程為x4,右頂點為A,上頂點為B,右焦點為F,斜率為2的直線l經過點A,且點F到直線l的距離為.

(1)求橢圓C的標準方程.

(2)將直線l繞點A旋轉,它與橢圓C相交于另一點P,當BF,P三點共線時,試確定直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn,且滿足 (kR)

1)求k和數(shù)列{an}的通項公式;

2)若數(shù)列{bn}滿足bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新零售模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.x表示在各區(qū)開設分店的個數(shù),y表示這個x個分店的年收入之和.

(1)該公司已經過初步判斷,可用線性回歸模型擬合yx的關系,求y關于x的線性回歸方程

(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)xy之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?

(參考公式:,其中,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個人的出生年份對應了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個,甲、乙、丙三位同學依次選一個作為禮物,甲同學喜歡牛和馬,乙同學喜歡牛、兔、狗和羊,丙同學哪個吉祥物都喜歡,如果讓三位同學選取的禮物都滿意,那么不同的選法有(  )

A. 50B. 60C. 70D. 90

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,

(1)求證:平面

(2)在棱上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為R的偶函數(shù)滿足:對,,且當,若函數(shù)(0,+)上至少有三個零點,則實數(shù)的取值范圍為

A. 0,B. 0,C. 0,D. 0,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

①函數(shù)的最大值為1

“若,則”的逆命題為真命題;

③若為銳角三角形,則有;

④“”是“函數(shù)在區(qū)間內單調遞增”的充分必要條件.

其中所有正確命題的序號為____________

查看答案和解析>>

同步練習冊答案