【題目】定義域為R的偶函數(shù)滿足:對,有,且當時,若函數(shù)在(0,+)上至少有三個零點,則實數(shù)的取值范圍為
A. (0,)B. (0,)C. (0,)D. (0,)
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重(單位:)與身高(單位:)具有線性相關關系。根據(jù)組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結論中不正確的是( )
A.與具有正的線性相關關系
B.回歸直線過樣本點的中心
C.若該大學某女生身高增加,則其體重約增加
D.若該大學某女生身高為,則可斷定其體重必為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過函數(shù)的圖象上一點作傾斜角互補的兩條直線,分別與交與異于的,兩點.
(1)求證:直線的斜率為定值;
(2)如果,兩點的橫坐標均不大于0,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為,在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點, 軸的正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若過點(極坐標)且傾斜角為的直線與曲線交于兩點,弦的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標方程;
(2)若曲線截直線所得線段的中點坐標為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次數(shù)學考試中,考生的成績號服從一個正態(tài)分布,即.
(1)試求考試成績位于區(qū)間上的概率是多少?
(2)若這次考試共有2000名考生,試估計考試成績在的考生大約有多少人?
(參考數(shù)據(jù):;;)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),其中a>1.
(1)求實數(shù)m的值;
(2)討論函數(shù)f(x)的增減性;
(3)當時,f(x)的值域是(1,+∞),求n與a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設F1,F2是橢圓C:(a>b>0)的左、右焦點,直線y=kx(k>0)與橢圓C交于A,B.已知橢圓C的焦距是2,四邊形AF1BF2的周長是4.
(1)求橢圓C的方程;
(2)直線AF1,BF1分別與橢圓C交于M,N,求△MNF1面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.在平面直角坐標系中,設A(﹣3,0),B(3,0),動點M滿足=2,則動點M的軌跡方程為()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com