【題目】離心率的橢圓的中心在坐標(biāo)原點,焦點在軸上.過點的斜率為的直線與橢圓交于點、,且滿足.

(1)固定,當(dāng)的面積取得最大值時,求橢圓的方程;

(2)若變化,且,試問:實數(shù)分別為何值時,橢圓的長軸長取得最大值?并求出此時橢圓的方程.

【答案】(1)(2)當(dāng)時,橢圓的長軸長取得最大值.此時,橢圓方程為

【解析】

設(shè)橢圓方程為.則由,得.

從而,橢圓方程化為.

設(shè),且與橢圓的兩個交點的坐標(biāo)分別為.

,得

聯(lián)立直線和橢圓的方程得.

,且

, ②

. ③

由式.

(1)當(dāng)固定時,

,

其中,當(dāng)且僅當(dāng),即時,上式等號成立.

此時,.

結(jié)合式,.

代入式.

此時,橢圓的方程為.

(2)由式①、②得

.

代入式③得

.

,,得.

易知,當(dāng)時,的減函數(shù),當(dāng)時,取得最大值.

因此,當(dāng),時,橢圓的長軸長取得最大值.此時,橢圓方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電商在雙十一搞促銷活動,顧客購滿5件獲得積分30分(不足5件不積分),每多買2件再積20分(不足2件不積分),比如某顧客購買了12件,則可積90分.為了解顧客積分情況,該電商在某天隨機抽取了1000名顧客,統(tǒng)計了當(dāng)天他們的購物數(shù)額,并將樣本數(shù)據(jù)分為,,,,,九組,整理得到如圖頻率分布直方圖.

(1)求直方圖中的值;

(2)從當(dāng)天購物數(shù)額在,的顧客中按分層抽樣的方式抽取6人.那么,從這6人中隨機抽取2人,則這2人積分之和不少于240分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)當(dāng)時,求證:時,;

(Ⅱ)當(dāng)時,計論函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.

(1)求未來4年中,至多1年的年入流量超過120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電量最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)試判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓.

1)若直線過點且到圓心的距離為,求直線的方程;

2)設(shè)過點的直線與圓交于、兩點(的斜率為負(fù)),當(dāng)時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某苗圃基地的柏樹幼苗生長情況,在這些樹苗中隨機抽取了120株測量高度(單位:cm),經(jīng)統(tǒng)計,樹苗的高度均在區(qū)間內(nèi),將其按,,, 分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥涿缟L規(guī)律,高度不低于27cm的為優(yōu)質(zhì)樹苗.

1)求圖中的值;

2)用樣本估計總體,頻率代替概率,若從這批樹苗中隨機抽取4株,其中優(yōu)質(zhì)樹苗的株數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a為正實數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個極值點,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若點在函數(shù)的圖象上運動,直線與函數(shù)的圖象不相交,求點到直線距離的最小值;

(Ⅱ)若當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案