【題目】已知復數(shù)集合 ,其中為虛數(shù)單位,若復數(shù),則對應的點在復平面內(nèi)所形成圖形的面積為________

【答案】

【解析】

先由復數(shù)的幾何意義確定集合所對應的平面區(qū)域,再確定集合所對應的平面區(qū)域,由復數(shù),可得復數(shù)對應的點在復平面內(nèi)所形成圖形即為集合與集合所對應區(qū)域的重疊部分,結(jié)合圖像求出面積即可.

因為復數(shù)集合,所以集合所對應的平面區(qū)域為所圍成的正方形區(qū)域;

,設,且,,

所以,設對應的點為,

,所以,又,,所以,

因為復數(shù),對應的點在復平面內(nèi)所形成圖形即為集合與集合所對應區(qū)域的重疊部分,如圖中陰影部分所示,

由題意及圖像易知:陰影部分為正八邊形,只需用集合所對應的正方形區(qū)域的面積減去四個小三角形的面積即可.

,由,

所以.

故答案為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

(2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準扶貧,不落一人”的政策要求落實情況, 扶貧辦隨機走訪了1000位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式,若,則①;②;③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為復數(shù),為純虛數(shù),

1)當求點的軌跡方程;

2)當時,若為純虛數(shù),求:的值和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)討論函數(shù)的單調(diào)性;

2)若有兩個極值點,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:x2=4y的焦點為F,直線:y=kx+b(k≠0)交拋物線C于A、B兩點,|AF|+|BF|=4,M(0,3).

(1)若AB的中點為T,直線MT的斜率為,證明:k· 為定值;

(2)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形,且,,點是線段的中點,過的平面交平面,且,,且,.

1)求證:

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

I)當時,求證平面

II)當二面角的大小為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面,為正方形,,分別為的中點.

(1)求證:直線平面;

(2)求直線與直線所成角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線方程.

2)當時,求函數(shù)的單調(diào)區(qū)間.

3)設函數(shù)若對于任意,都有成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案