【題目】已知雙曲線的左、右頂點(diǎn)分別為,焦點(diǎn)在軸上的橢圓以為頂點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)的直線交雙曲線右支于另一點(diǎn),交橢圓于另一點(diǎn),記,的面積分別為,若,求直線的斜率.
【答案】(1);(2).
【解析】
(1)由雙曲線的性質(zhì)可得的坐標(biāo),即可得橢圓中的值,結(jié)合離心率可得的值,進(jìn)而可得結(jié)果.
(2)設(shè),,直線方程,分別將直線與雙曲線的方程,直線與橢圓的方程聯(lián)立求得,的值,根據(jù)面積關(guān)系可得為和的中點(diǎn),即,代入解出的值即可.
(1)由題意得,,所以在焦點(diǎn)在軸上橢圓中,
又∵橢圓離心率,結(jié)合,可得,
∴橢圓的方程為.
(2)設(shè),其中,,
由題意可得直線斜率一定存在,故可設(shè)直線方程,
由得,
又∵,即,
由得,
又∵,即,
,的面積分別為,滿足,
可得為和的中點(diǎn),即,
代入得,
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知,().
(1)證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)若(為非零常數(shù)),問是否存在整數(shù),使得對(duì)任意都有?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市在精準(zhǔn)扶貧和生態(tài)文明建設(shè)的專項(xiàng)工作中,為改善農(nóng)村生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,開展農(nóng)村生活用水排污管道“村村通”.已知排污管道外徑為1米,當(dāng)兩條管道并行經(jīng)過一塊農(nóng)田時(shí),如圖,要求兩根管道最近距離不小于0.25米,埋沒的最小覆土厚度(路面至管頂)不低于0.5米.埋設(shè)管道前先挖掘一條橫截面為等腰梯形的溝渠,且管道所在的兩圓分別與兩腰相切.設(shè).
(1)為了減少農(nóng)田的損毀,則當(dāng)為何值時(shí),挖掘的土方量最少?
(2)水管用吊車放入渠底前需了解吊繩的長(zhǎng)度,在(1)的條件下計(jì)算長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺(tái)不同機(jī)器和生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認(rèn)為機(jī)器生產(chǎn)的產(chǎn)品比機(jī)器生產(chǎn)的產(chǎn)品好;
生產(chǎn)的產(chǎn)品 | 生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺(tái)不同機(jī)器和生產(chǎn)的產(chǎn)品中各隨機(jī)抽取2件,求4件產(chǎn)品中機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量多于機(jī)器生產(chǎn)的優(yōu)等品的數(shù)量的概率;
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,機(jī)器每生產(chǎn)10萬件的成本為20萬元,機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來的兩臺(tái)機(jī)器嗎?
附:獨(dú)立性檢驗(yàn)計(jì)算公式:.
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求出的值;
(2)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位正方體中,點(diǎn)P在線段上運(yùn)動(dòng),給出以下四個(gè)命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形中,,過分別作,,垂足分別為.,,已知,將梯形沿同側(cè)折起,得空間幾何體,如圖2.
(1)若,證明:平面.
(2)若,,是線段上靠近點(diǎn)的三等分點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.
(1)若當(dāng)時(shí),,求此時(shí)的值;
(2)設(shè),且.
(i)試將表示為的函數(shù),并求出的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com