【題目】已知函數(shù).
(1)當時,解不等式;
(2)若不等式對恒成立,求m的取值范圍.
【答案】(1) 見解析;(2)
【解析】
(1)當m>﹣2時,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,對m進行討論,可得解集;(2)轉(zhuǎn)化為x∈[﹣1,1]恒成立,分離參數(shù),利用基本不等式求最值求解m的取值范圍.
(1)當時,;即.
可得:.∵
①當時,即.不等式的解集為
②當時,.∵,
∴不等式的解集為
③當時,.∵,
∴不等式的解集為
綜上:,不等式的解集為;
當時,不等式的解集為;
當時,不等式的解集為.
(2)由題對任意,不等式恒成立.
即.∵時,恒成立.
可得:.設(shè),.則.
可得:
∵,當且僅當是取等號.
∴,當且僅當是取等號.
故得m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.
(1)求證:;
(2)若圓柱的體積,
①求三棱錐A1﹣APB的體積.
②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:①用刻畫回歸效果,當越大時,模型的擬合效果越差,反之則越好;②歸納推理是由特殊到一般的推理,而演繹推移則是由一般到特殊的推理;③綜合法證明數(shù)學問題是“由因索果”,分析法證明數(shù)學問題是“執(zhí)果索因”;④設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位;⑤線性回歸方程必過點.其中錯誤的個數(shù)有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得到如下頻率分布直方圖:
(1)求直方圖中的值;
(2)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少(結(jié)果保留整數(shù));
(3)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.
(參考數(shù)據(jù):若,則,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,
9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓E: 的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1 , F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個命題與正整數(shù)n有關(guān),如果當 時命題成立,那么可推得當時命題也成立. 現(xiàn)已知當n=8時該命題不成立,那么可推得 ( )
A. 當n=7時該命題不成立 B. 當n=7時該命題成立
C. 當n=9時該命題不成立 D. 當n=9時該命題成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com