【題目】如圖,以橢圓()的右焦點為圓心,為半徑作圓(其中為已知橢圓的半焦距),過橢圓上一點作此圓的切線,切點為.
(1)若,為橢圓的右頂點,求切線長;
(2)設(shè)圓與軸的右交點為,過點作斜率為()的直線與橢圓相交于、兩點,若恒成立,且.求:
(ⅰ)的取值范圍;
(ⅱ)直線被圓所截得弦長的最大值.
【答案】(1);(2)(ⅰ),(ⅱ).
【解析】
(1)利用求得,進(jìn)而得到,利用勾股定理可求得切線長;
(2)(。┯恒成立可知;根據(jù)切線長的求解可知當(dāng)最小時,最小,從而構(gòu)造出不等式求得的范圍;
(ⅱ)設(shè)直線方程,與橢圓方程聯(lián)立后寫出韋達(dá)定理的形式,同時利用韋達(dá)定理表示出,根據(jù)垂直關(guān)系可得,從而構(gòu)造等式求得,得到直線方程;利用垂徑定理可將所求弦長化為,采用換元法,可將等式右側(cè)變?yōu)殛P(guān)于的函數(shù)的形式,結(jié)合二次函數(shù)的性質(zhì)可求得函數(shù)的最大值,即為所求弦長的最大值.
(1)由得:
當(dāng)為橢圓右頂點時,
又圓的半徑為
(2)(。┊(dāng)取得最小值時,取得最小值
,則,即
又,,解得:
即的取值范圍為
(ⅱ)由題意得:,則直線
聯(lián)立得:
設(shè),,則,
,整理可得:
又 直線,即
圓心距離,又半徑
直線被圓截得的弦長為
令,則,令
當(dāng),即時,
即直線被圓截得的弦長的最大值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點,并要求與扇形弧相切于點.設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計.
(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬建造一座體育館,其設(shè)計方案側(cè)面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,B是AC的中點,,P是平行四邊形BCDE內(nèi)(含邊界)的一點,且.有以下結(jié)論:
①當(dāng)x=0時,y∈[2,3];
②當(dāng)P是線段CE的中點時,;
③若x+y為定值1,則在平面直角坐標(biāo)系中,點P的軌跡是一條線段;
④x﹣y的最大值為﹣1;
其中你認(rèn)為正確的所有結(jié)論的序號為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在與正實數(shù),使得成立,則稱函數(shù)在處存在距離為的對稱點,把具有這一性質(zhì)的函數(shù)稱之為“型函數(shù)”.
(1)設(shè),試問是否是“型函數(shù)”?若是,求出實數(shù)的值;若不是,請說明理由;
(2)設(shè)對于任意都是“型函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為整數(shù)的無窮數(shù)列滿足:,且對所有,均成立.
(1)寫出的所有可能值(不需要寫計算過程);
(2)若是公差為1的等差數(shù)列,求的通項公式;
(3)證明:存在滿足條件的數(shù)列,使得在該數(shù)列中,有無窮多項為2019.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面,四邊形是正方形,且,點,,分別是線段,,的中點.
(1)求異面直線與所成角的大小(結(jié)果用反三角表示);
(2)在線段上是否存在一點,使,若存在,求出的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若
(1)當(dāng)時,設(shè)所對應(yīng)的自變量取值區(qū)間的長度為(閉區(qū)間的長度為),試求的最大值;
(2)是否存在這樣的使得當(dāng)時,?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項和為,且.
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com