(1)已知等差數(shù)列的前項(xiàng)和,求證:
(2)已知有窮等差數(shù)列的前三項(xiàng)和為20,后三項(xiàng)和為130,且,求

(1)利用倒序相加法可以證明;(2)25

解析試題分析:(1)∵,,相加得,即;(2)∵,∴,又,∴n=25
考點(diǎn):本題考查了等差數(shù)列的前n項(xiàng)和及其性質(zhì)
點(diǎn)評(píng):若一個(gè)數(shù)列和的各項(xiàng)系數(shù)是“首尾”對(duì)稱的,則可采用倒序相加法處理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令求數(shù)列前n項(xiàng)和的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,且
(1)求數(shù)列的第二項(xiàng);
(2)若成等比數(shù)列,求數(shù)列的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項(xiàng)的和為,且 ().
(1) 求數(shù)列,的通項(xiàng)公式;
(2) 記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列前三項(xiàng)為,前項(xiàng)的和為=2550.
⑴ 求的值;  
⑵ 求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:,,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令 bn= (nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
在等差數(shù)列中,已知
(Ⅰ)求通項(xiàng)和前n項(xiàng)和;
(Ⅱ)求的最大值以及取得最大值時(shí)的序號(hào)的值;
(Ⅲ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案