【題目】設函數(shù)f(x)=|x+m|.
(Ⅰ) 解關于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當x≠0時,證明: .
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經濟的發(fā)展,某地最近幾年某商品的需求量逐年上升.下表為部分統(tǒng)計數(shù)據(jù):
年份 | |||||
需求量(萬件) |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,令,.
(1)填寫下列表格并求出關于的線性回歸方程:
時間代號 | |||||
(萬件) |
(2)根據(jù)所求的線性回歸方程,預測到年年底,某地對該商品的需求量是多少?
(附:線性回歸方程,其中,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD內接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解當下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進行了抽樣調查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.
(1)若身高在以內的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?
(2)從所抽取的樣本中身高在和的男生中隨機再選出2人調查其平時體育鍛煉習慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為創(chuàng)建“綠色校園”,在校園內種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內的生長規(guī)律如下:
A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;
B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;
C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,取).
(1)若要求6年內樹木的高度超過5米,你會選擇哪種樹木?為什么?
(2)若選C樹木,從種植起的6年內,第幾年內生長最快?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且),為自然對數(shù)的底數(shù).
(Ⅰ)當時,求函數(shù)在區(qū)間上的最大值;
(Ⅱ)若函數(shù)只有一個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信紅包是一款年輕人非常喜歡的手機應用.某網絡運營商對甲、乙兩個品牌各種型號的手機在相同環(huán)境下?lián)尩郊t包的個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):
品牌 型號 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個) | 5 | 7 | 9 | 4 | 3 |
紅包個數(shù) 手機品牌 | 優(yōu)良 | 一般 | 合計 |
甲品牌(個) | |||
乙品牌(個) | |||
合計 |
(Ⅰ)如果搶到紅包個數(shù)超過個的手機型號為“優(yōu)良”,否則為“一般”,請完成上述表格,并據(jù)此判斷是否有的把握認為搶到紅包的個數(shù)與手機品牌有關?
(Ⅱ)不考慮其它因素,現(xiàn)要從甲、乙兩品牌的種型號中各選出種型號的手機進行促銷活動,求恰有一種型號是“優(yōu)良”,另一種型號是“一般”的概率;
參考公式:隨機變量的觀察值計算公式:,
其中.臨界值表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com