【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù));在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l:y=kx(x≥0)分別交C1 , C2于A,B兩點(diǎn)(A,B異于原點(diǎn)).當(dāng) 時(shí),求|OA||OB|的取值范圍.

【答案】解:(Ⅰ)由題意得,由 可得(x﹣1)2+y2=cos2α+sin2α, 即C1的普通方程為(x﹣1)2+y2=1.
方程ρcos2θ=sinθ可化為ρ2cos2θ=ρsinθ…(*),
代入方程(*),可得x2=y.
(Ⅱ)聯(lián)立方程
聯(lián)立方程組 ,可得B(k,k2),
所以
,所以
【解析】(Ⅰ)由題意得,由 ,利用平方關(guān)系可得C1的普通方程為(x﹣1)2+y2=1.方程ρcos2θ=sinθ可化為ρ2cos2θ=ρsinθ,將 代入方程之間坐標(biāo)方程.(Ⅱ)聯(lián)立方程 ,可得A坐標(biāo).聯(lián)立方程組 ,可得B,進(jìn)而得出|OA||OB|的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx)是定義在 R上的偶函數(shù),當(dāng) x≥0 時(shí),fx)=x2+ax+b 的部分圖象如圖所示:

1)求 fx)的解析式;

2)在網(wǎng)格上將 fx)的圖象補(bǔ)充完整,并根據(jù) fx)圖象寫出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識(shí)存留量記為1,則x天后的存留量;若在tt4)天時(shí)進(jìn)行第一次復(fù)習(xí),則此時(shí)知識(shí)存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)時(shí)間忽略不計(jì)),其后存留量y2隨時(shí)間變化的曲線恰為直線的一部分,其斜率為a0),存留量隨時(shí)間變化的曲線如圖所示.當(dāng)進(jìn)行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時(shí),則稱此時(shí)刻為二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)

1)若a=-1t5二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn);

2)若出現(xiàn)了二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過F的直線l交C于A,B兩點(diǎn),交x軸于點(diǎn)D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 (a0+a1x+a2x2+…+anxn)dx=x(x+1)n , 則a1+a2+…+an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線G:y2=2px(p>0)焦點(diǎn)F的直線l與拋物線G交于M、N兩點(diǎn)(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D為三角形ABC邊BC上一點(diǎn), =3 ,En(n∈N*)為AC邊上的一列點(diǎn),滿足 = an+1 ﹣(3an+2) ,其中實(shí)數(shù)列{an}中,an>0,a1=1,則{an}的通項(xiàng)公式為(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

查看答案和解析>>

同步練習(xí)冊答案