【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求證:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

【答案】(1) 見(jiàn)解析(2)

【解析】試題分析:Ⅰ)作AC的中點(diǎn)O,由A1A=A1C,且OAC的中點(diǎn),得A1OAC,再由面面垂直的性質(zhì)可得A1O⊥底面ABC,以O為坐標(biāo)原點(diǎn),OB、OCOA1所在直線分別為x、yz軸建立空間直角坐標(biāo)系,求出所用點(diǎn)的坐標(biāo),由=0,可得ACA1B;

求出平面AA1C與平面A1CB的法向量,由兩法向量所成角的余弦值可得二面角A﹣A1C﹣B的余弦值.

試題解析:

(Ⅰ)證明:作AC的中點(diǎn)O,∵A1A=A1C,且O為AC的中點(diǎn),∴A1O⊥AC,

又側(cè)面AA1C1C⊥底面ABC,其交線為AC,且A1O平面AA1C1C,

∴A1O⊥底面ABC,

以O(shè)為坐標(biāo)原點(diǎn),OB、OC、OA1所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,

由已知得:O(0,0,0),A(0,﹣1,0),A1(0,0,),C(0,1,0),C1(0,2,),B(1,0,0).

則有:,,

=0,∴AC⊥A1B;

(Ⅱ)解:平面AA1C的一個(gè)法向量為

設(shè)平面A1CB的一個(gè)法向量,

,取z=1,得

∴cos<>=

二面角A﹣A1C﹣B的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖并求、的值;

2)從歲年齡段的低碳族中采用分層抽樣法抽取18人參加戶外低碳體驗(yàn)活動(dòng),如何抽。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠要建造一個(gè)長(zhǎng)方形無(wú)蓋蓄水池,其容積為立方米,深為.如果池底每平方米的造價(jià)為元,池壁每平方米的造價(jià)為元,那么怎樣設(shè)計(jì)水池能使總造價(jià)最低(設(shè)蓄水池池底的相鄰兩邊邊長(zhǎng)分別為,)?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右交點(diǎn)分別為 ,點(diǎn)滿足

)求橢圓的離心率

)設(shè)直線與橢圓相交于 兩點(diǎn),若直線與圓相交于, 兩點(diǎn),且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a >0,已知函數(shù) (x>0)

()討論函數(shù)的單調(diào)性

()試判斷函數(shù)上是否有兩個(gè)零點(diǎn),并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王在年初用50萬(wàn)元購(gòu)買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車每年的運(yùn)輸收入均為25萬(wàn)元.小王在該車運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為25x萬(wàn)元(國(guó)家規(guī)定大貨車的報(bào)廢年限為10年).

1)大貨車運(yùn)輸?shù)降趲啄昴甑,該車運(yùn)輸累計(jì)收入超過(guò)總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤(rùn)最大(利潤(rùn)=累計(jì)收入+銷售收入-總支出)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點(diǎn),作EFPBPB于點(diǎn)F

(Ⅰ)證明 PA//平面EDB;

(Ⅱ)證明PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)教師年齡數(shù)據(jù)如下表:

年齡(歲)

人數(shù)(人)

22

1

28

2

29

3

30

5

31

4

32

3

40

2

合計(jì)

20

(1)求這20名教師年齡的眾數(shù)與極差;

(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名教師年齡的莖葉圖;

(3)現(xiàn)在要在年齡為29歲和31歲的教師中選2位教師參加學(xué)校有關(guān)會(huì)議,求所選的2位教師年齡不全相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案