【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問(wèn)題.規(guī)定正確回答問(wèn)題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是且各階段通過(guò)與否相互獨(dú)立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競(jìng)賽中回答問(wèn)題的個(gè)數(shù)為ξ,求ξ的分布列與均值.
【答案】(1) (2) ξ的分布列為:
ξ | 1 | 2 | 3 |
P |
Eξ=2
【解析】試題分析:(1)選手在復(fù)賽階段被淘汰的概率P=P(A ),分別求出P(A)=,P(B)= ,代入公式P=P(A )=P(A)P()得到結(jié)果。(2)根據(jù)題意得到P(ξ=1)= ,P(ξ=2)= ,P(ξ=3)=,再根據(jù)期望公式得到結(jié)果。
解析:
(1)解:記“該選手通過(guò)初賽”為事件A,“該選手通過(guò)復(fù)賽”為事件B,“該選手通過(guò)決賽”為事件C,則P(A)=,P(B)= ,P(C)=
那么該選手在復(fù)賽階段被淘汰的概率P=P(A )=P(A)P()=
(2)解:ξ可能取值為1,2,3.
P(ξ=1)=1﹣= ,
P(ξ=2)=
P(ξ=3)= +=
故ξ的分布列為:
ξ | 1 | 2 | 3 |
P |
Eξ=1 +2 +3 =2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,…,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8
C. 12 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin x,g(x)=mx- (m為實(shí)數(shù)).
(1)求曲線(xiàn)y=f(x)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,直線(xiàn)交橢圓于, 兩點(diǎn), 的周長(zhǎng)為16, 的周長(zhǎng)為12.
(1)求橢圓的標(biāo)準(zhǔn)方程與離心率;
(2)若直線(xiàn)與橢圓交于兩點(diǎn),且是線(xiàn)段的中點(diǎn),求直線(xiàn)的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) .
(1)若直線(xiàn)與和和圖象均相切,求直線(xiàn)的方程;
(2)是否存在使得按某種順序組成等差數(shù)列?若存在,這樣的有幾個(gè)?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù), .
(1)求證: ;
(2)若存在,使,求的取值范圍;
(3)若對(duì)任意的恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com