【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
【答案】(1)見解析(2)
【解析】試題分析:
(1)連結(jié),結(jié)合幾何關(guān)系可證得,結(jié)合線面平行的判斷定理可得MN//平面ACC1A1;
(2)由題意可得: ,且點(diǎn)M到平面的的距離為,利用三棱錐轉(zhuǎn)換頂點(diǎn)體積相等可得點(diǎn)N到平面MBC的距離為 .
試題解析:
(1)證明:如圖,連接,
因?yàn)樵撊庵侵比庵?/span>,則四邊形為矩形,
由矩形性質(zhì)得過(guò)的中點(diǎn)M,
在中,由中位線性質(zhì)得,
又,,
.
(2)解:,,
又點(diǎn)M到平面的,
設(shè)點(diǎn)與平面的距離為,
由可得,
即,
解得,即點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)定義域D內(nèi)的每一個(gè)x1,都存在唯一的x2∈D,使得成立,則稱f (x)為“自倒函數(shù)”.給出下列命題:
①是自倒函數(shù);
②自倒函數(shù)f (x)可以是奇函數(shù);
③自倒函數(shù)f (x)的值域可以是R;
④若都是自倒函數(shù),且定義域相同,則也是自倒函數(shù).
則以上命題正確的是_______(寫出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出集合.
(1)若,求證:函數(shù);
(2)由(1)分析可知, 是周期函數(shù)且是奇函數(shù),于是張三同學(xué)得出兩個(gè)命
題:命題甲:集合中的元素都是周期函數(shù).命題乙:集合中的元素都是奇函數(shù). 請(qǐng)對(duì)此
給出判斷,如果正確,請(qǐng)證明;如果不正確,請(qǐng)舉反例;
(3)若,數(shù)列滿足: ,且 ,數(shù)列的前項(xiàng)
和為,試問(wèn)是否存在實(shí)數(shù)、,使得任意的,都有成立,若
存在,求出、的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);
(2)過(guò)直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為A,B,求證:直線AB過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】博鰲亞洲論壇2015年會(huì)員大會(huì)于3月27日在海南博鰲舉辦,大會(huì)組織者對(duì)招募的100名服務(wù)志愿者培訓(xùn)后,組織一次 知識(shí)競(jìng)賽,將所得成績(jī)制成如右頻率分布直方圖(假定每個(gè)分?jǐn)?shù)段內(nèi)的成績(jī)均勻分布),組織者計(jì)劃對(duì)成績(jī)前20名的參賽者進(jìn)行獎(jiǎng)勵(lì).
(1)試確定受獎(jiǎng)勵(lì)的分?jǐn)?shù)線;
(2)從受獎(jiǎng)勵(lì)的20人中利用分層抽樣抽取5人,再?gòu)某槿〉?人中抽取2人在主會(huì)場(chǎng)服務(wù),試求2人成績(jī)都在90分以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問(wèn)題.規(guī)定正確回答問(wèn)題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是且各階段通過(guò)與否相互獨(dú)立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競(jìng)賽中回答問(wèn)題的個(gè)數(shù)為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com