【題目】設(shè)有直線和平面,則下列四個命題中,正確的是( )

A. mα,nα,則mnB. mαnα,mβ,lβ,則αβ

C. αβ,mα,則mβD. αβ,mβmα,則mα

【答案】D

【解析】

A中,mn相交、平行或異面;在B中,αβ相交或平行;

C中,mβmβmβ相交;在D中,由直線與平面垂直的性質(zhì)與判定定理可得mα

由直線m、n,和平面αβ,知:

對于A,若mαnα,則mn相交、平行或異面,故A錯誤;

對于B,若mα,nαmβ,nβ,則αβαβ相交,故B錯誤;

對于中,若αβ,αβ,mα,則mβmβmβ相交,故C錯誤;

對于D,若αβ,mβmα,則由直線與平面垂直的性質(zhì)與判定定理得mα,故D正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:①用刻畫回歸效果,當越大時,模型的擬合效果越差,反之則越好;②歸納推理是由特殊到一般的推理,而演繹推移則是由一般到特殊的推理;③綜合法證明數(shù)學問題是“由因索果”,分析法證明數(shù)學問題是“執(zhí)果索因”;④設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位;⑤線性回歸方程必過點.其中錯誤的個數(shù)有( )

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓E: 的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1 , F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),過點的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求曲線的普通方程,并說明它表示什么曲線;

(Ⅱ)設(shè)曲線與直線分別交于兩點,若,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,若分別為的中點.

)求證:平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個命題與正整數(shù)n有關(guān),如果當 時命題成立,那么可推得當時命題也成立. 現(xiàn)已知當n=8時該命題不成立,那么可推得 ( )

A. 當n=7時該命題不成立 B. 當n=7時該命題成立

C. 當n=9時該命題不成立 D. 當n=9時該命題成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足對任意,都有成立,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動,現(xiàn)隨機抽出60名男生和40名女生共100人進行調(diào)查,統(tǒng)計出100名市民中愿意參加志愿活動和不愿意參加志愿活動的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認為愿意參與志愿活動與性別有關(guān)?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,再從中抽取2人作為隊長,求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

同步練習冊答案