【題目】設是定義在上的函數(shù),如果存在點,對函數(shù)的圖象上任意點,關于點的對稱點也在函數(shù)的圖象上,則稱函數(shù)關于點對稱,稱為函數(shù)的一個對稱點,對于定義在上的函數(shù),可以證明點是圖象的一個對稱點的充要條件是,.
(1)求函數(shù)圖象的一個對稱點;
(2)函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由;
(3)函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由.
【答案】(1)函數(shù)圖象的一個對稱點為;
(2)函數(shù)的圖象無對稱點.
(3)函數(shù)的圖象有一個對稱點.
【解析】
試題分析:(1)設為函數(shù)圖象的一個對稱點,由題意即對于恒成立,由可得函數(shù)圖象的一個對稱點;(2)假設是函數(shù)的圖象的一個對稱點,即對于恒成立,因為,所以不恒成立,即函數(shù)的圖象無對稱點.(3)假設是函數(shù)的圖象的一個對稱點,對于恒成立,所以
解之即可.
試題解析:(1)設為函數(shù)圖象的一個對稱點,則對于恒成立,即對于恒成立,
∴由,
故函數(shù)圖象的一個對稱點為.
(2)假設是函數(shù)的圖象的一個對稱點,
則對于恒成立,
即對于恒成立,因為,所以不恒成立,即函數(shù)的圖象無對稱點.
(3)假設是函數(shù)的圖象的一個對稱點,
則對于恒成立,
即對于恒成立,
所以
故函數(shù)的圖象有一個對稱點.
(其實,而函數(shù)是奇函數(shù),其圖象關于原點對稱,故的圖象關于對稱)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設是函數(shù)的極值點,求并討論的單調性;
(2)設是函數(shù)的極值點,且恒成立,求的取值范圍(其中常數(shù)滿足).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某地高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?
(3)通過該統(tǒng)計圖,可以估計該地學生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有20名學生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績落在中的學生人數(shù);
(Ⅲ)從成績在的學生中任選2人,求所選學生的成績都落在中的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按元/次收費, 并注冊成為會員, 對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比例 |
該公司從注冊的會員中, 隨機抽取了位進行統(tǒng)計, 得到統(tǒng)計數(shù)據(jù)如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 第次 |
頻數(shù) |
假設汽車美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;
(3)以事件發(fā)生的頻率作為相應事件發(fā)生的概率, 設該公司為一位會員服務的平均利潤為元, 求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個袋中裝有5個形狀大小完全相同的球,其中有2個紅球,3個白球.
(1)從袋中隨機取兩個球,求取出的兩個球顏色不同的概率;
(2)從袋中隨機取一個球,將球放回袋中,然后再從袋中隨機取一個球,求兩次取出的球中至少有一個紅球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在今年內同時出售變頻空調機和智能洗衣機,由于這兩種產品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產品的月供應量,以使得總利潤達到最大.已知對這兩種產品有直接限制的因素是資金和勞動力,經調查,得到關于這兩種產品的有關數(shù)據(jù)如下表:
資金 | 每臺產品所需資金(百元) | 月資金供應量 (百元) | |
空調機 | 洗衣機 | ||
成本 | 30 | 20 | 300 |
勞動力(工資) | 5 | 10 | 110 |
每臺產品利潤 | 6 | 8 |
試問:怎樣確定兩種貨物的月供應量,才能使總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)體育測試成績分為四個等級:優(yōu)、良、中、不及格.某班50名學生參加測試的結果如下:
等級 | 優(yōu) | 良 | 中 | 不及格 |
人數(shù) | 5 | 19 | 23 | 3 |
(1)從該班任意抽取1名學生,求這名學生的測試成績?yōu)?/span>“良”或“中”的概率;
(2)測試成績?yōu)?/span>“優(yōu)”的3名男生記為,,,2名女生記為,.現(xiàn)從這5人中任選2人參加學校的某項體育比賽.
① 寫出所有等可能的基本事件;
② 求參賽學生中恰有1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com