命題:不等式對一切實數(shù)都成立;命題:已知函數(shù)的圖像在點處的切線恰好與直線平行,且上單調(diào)遞減.若命題為真,求實數(shù)的取值范圍.

.

解析試題分析:本題首先把命題看成真命題分別求出參數(shù)的取值范圍,然后根據(jù)為真,則至少有一個為真便可求得實數(shù)的取值范圍.
試題解析:由不等式恒成立可得
真,
得:
  
的減區(qū)間
依題意知:

為真,則至少有一個為真

考點:1.命題真假的判斷;2.導數(shù)求單調(diào)區(qū)間.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設命題p:實數(shù)x滿足,其中,命題實數(shù)滿足.
(1)若為真,求實數(shù)的取值范圍;
(2)若的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設命題:實數(shù)滿足,其中;命題:實數(shù)滿足.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若成立的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x|x-a|+b,求證:f(x)為奇函數(shù)的充要條件是a2+b2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定兩個命題,:對任意實數(shù)都有恒成立;:關于的方程有實數(shù)根;如果為真,為假,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知p:?x∈R,2x>m(x2+1),q:?x0∈R,+2x0-m-1=0,且p∧q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題:方程在[-1,1]上有解;命題:只有一個實數(shù)滿足不等式,若命題“p或q”是假命題,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知命題和命題,若的必要不充分條件,求實數(shù)的取值范圍.
(2)已知命題方程的一根在內(nèi),另一根在內(nèi).
命題函數(shù)的定義域為全體實數(shù).
為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

命題p:  ,其中滿足條件:五個數(shù)的平均數(shù)是20,標準差是; 命題q:m≤t≤n ,其中m,n滿足條件:點M在橢圓上,定點A(1,0),m、n分別為線段AM長的最小值和最大值。若命題“p或q”為真且命題“p且q”為假,求實數(shù)t的取值范圍。

查看答案和解析>>

同步練習冊答案