【題目】已知動圓過點且與直線相切,圓心的軌跡為曲線.

1)求曲線的方程;

2)若,是曲線上的兩個點且直線的外心,其中為坐標原點,求證:直線過定點.

【答案】(1) (2)證明見解析

【解析】

1)根據(jù)題意,設點,由半徑相等建立關系式,化簡即可求得解析式;

2)可判斷直線斜率一定存在,設直線的方程為,聯(lián)立直線與拋物線方程求得關于的韋達定理,再由直線的外心,可得,即,結(jié)合前式的韋達定理表示的關系式解方程可求參數(shù),即可求定點

1)設點,則,

平方整理得:

∴曲線的方程為.

2)證明:由題意可知直線的斜率一定存在,否則不與曲線有兩個交點.

的方程為,設點,,聯(lián)立方程

,

則得,

得:,.

.

.

∵直線的外心,其中為坐標原點,∴.

,,

解得,當時,滿足.

∴直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預計月銷售量將減少p萬件.

1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;

2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?

3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓長軸的兩個端點分別為, 離心率.

1)求橢圓的標準方程;

2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點,在第四象限相交于點,若直線與直線相交于點,且直線的斜率大于,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)存在兩個零點.

1)求實數(shù)的取值范圍;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進行檢測,現(xiàn)在某條生產(chǎn)線上隨機抽取100個產(chǎn)品進行相關數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機抽取5個產(chǎn)品,再從這5個產(chǎn)品中隨機抽取2個產(chǎn)品記錄有關數(shù)據(jù),求這2個產(chǎn)品中恰有一個一等品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一塊多邊形的花園,它的水平放置的平面圖形的斜二測直觀圖是如圖所示的直角梯形,其中米,,則這塊花園的面積為______平方米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列與正項數(shù)列的前項和分別為,且對任意恒成立.

1)若,求數(shù)列的通項公式;

2)在(1)的條件下,若,求;

3)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將4名大學生隨機安排到A,B,C,D四個公司實習.

(1)求4名大學生恰好在四個不同公司的概率;

(2)隨機變量X表示分到B公司的學生的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中,角的頂點與坐標原點重合,始邊與軸非負半軸重合,終邊經(jīng)過點,且.

(Ⅰ)若點的坐標為,求的值;

(Ⅱ)若點為線性約束條件所圍成的平面區(qū)域上的一個動點,試確定角的取值范圍,并求函數(shù)的最小值和最大值.

查看答案和解析>>

同步練習冊答案