【題目】已知函數(shù).

1)當(dāng)時,求證:;

2)若不等式上恒成立,求實數(shù)的取值范圍.

【答案】1)證明見解析;(2

【解析】

1)構(gòu)造函數(shù),對函數(shù)求導(dǎo),從而得到函數(shù)的最大值,則不等式獲證;(2)先對函數(shù)求導(dǎo),再對參數(shù)分類討論,分別求得函數(shù)上的最大值,將不等式恒成立問題轉(zhuǎn)化為的最大值小于或等于0,即可得到實數(shù)的取值范圍.

解:(1)易知函數(shù)的定義域為.

設(shè)

,

所以上單調(diào)遞增,在上單調(diào)遞減,

所以處取得最大值,

所以

所以.

2)因為,所以.

①當(dāng)時,上單調(diào)遞減,

所以當(dāng)時,,所以滿足題意.

②當(dāng)時,令,則,

所以當(dāng)時,,當(dāng)時,,

所以上單調(diào)遞增,在上單調(diào)遞減,

所以處取得最大值.

當(dāng),即時,上單調(diào)遞增,

所以當(dāng)時,,不符合題意.

當(dāng),即時,上單調(diào)遞增,在上單調(diào)遞減,

所以當(dāng)時,.

設(shè),則.

當(dāng)時,,所以上單調(diào)遞增,

所以當(dāng)時,,不滿足題意.

當(dāng),即時,上單調(diào)遞減,

所以當(dāng)時,,所以滿足題意.

綜上所述,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.

1)已知,證明:平面平面

2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過橢圓的四個頂點與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點分別為.當(dāng)它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國剪紙是我國廣大勞動人民在生產(chǎn)與生活實踐中創(chuàng)造出來的一種平面剪刻藝術(shù).民間剪紙藝術(shù)是我國優(yōu)秀的非物質(zhì)文化遺產(chǎn)之一,在千百年的發(fā)展過程中,積淀了豐厚的文化歷史,取得了卓越的藝術(shù)成就.20203月發(fā)行的郵票《中國剪紙(二)》共4枚,第一枚郵票《三娘教子》(如圖1)出自“孟母教子”的故事,講述了母親通過斷織等行為教育孩子努力上進(jìn),懂得感恩.圖2是某剪紙藝術(shù)家根據(jù)第一枚郵票用一張半徑為4個單位的圓形紙片裁剪而成的《三娘教子》剪紙.為了測算圖2中有關(guān)部分的面積,在圓形區(qū)域內(nèi)隨機(jī)投擲400個點,其中落入圖案上的點有225個,據(jù)此可估計剪去部分紙片的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖像與的圖像交于不同的兩點,線段的中點為

1)求實數(shù)的取值范圍;

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若,當(dāng)時,證明:

2)若當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,測量了他們的體重(單位:千克).健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過半年的健身后,他們的體重情況如三維餅圖(2)所示,對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論正確的是(

A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)不變

B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)減少了2

C.他們健身后,體重在區(qū)間內(nèi)的肥胖者體重都有減輕

D.他們健身后,這20位肥胖著的體重的中位數(shù)位于區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,點在曲線上,直線l過點且與OM垂直,垂足為P.

1)當(dāng)時,求在直角坐標(biāo)系下點坐標(biāo)和l的方程;

2)當(dāng)MC上運動且P在線段OM上時,求點P在極坐標(biāo)系下的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項,前項和為,且滿足

1)若數(shù)列為遞增數(shù)列,求實數(shù)的取值范圍;

2)若,數(shù)列滿足,求數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案