【題目】如圖,在五面體中,四邊形為矩形,為等邊三角形,且平面平面.

1)證明:平面平面

2)若,求直線與平面所成角的正弦值.

【答案】1)見(jiàn)解析(2

【解析】

中點(diǎn),則,從而平面,進(jìn)而可得平面,由面面垂直的判定即可得證;

中點(diǎn),以為坐標(biāo)原點(diǎn),軸建系.利用空間向量法,求出直線的方向向量和平面的法向量,求出向量夾角的余弦值即可.

證明:取中點(diǎn),因?yàn)?/span>為等邊三角形,所以,

又平面平面,且平面平面,

所以平面,則,

,所以平面,

平面,所以平面平面.

中點(diǎn),由知平面平面

所以平面,

如圖.為坐標(biāo)原點(diǎn),軸建系.設(shè)長(zhǎng)度為,

則點(diǎn)坐標(biāo)為:

因?yàn)?/span>,所以平面

又平面平面,平面

由線面平行的性質(zhì)知,,

由共線向量定理知,存在唯一實(shí)數(shù)使,

因?yàn)?/span>,所以點(diǎn).

由于,所以

解得.于是,

設(shè)平面的法向量為,

因?yàn)?/span>,

所以,解得,

從而平面的法向量為

又直線的方向向量為,

記直線與平面所成角為,

所以

所以直線與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Cab>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過(guò)F1的直線l與橢C交于MN兩點(diǎn),且MNF2的周長(zhǎng)為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點(diǎn),且OAOB,試問(wèn)點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年一種新奇水果深受廣大消費(fèi)者的喜愛(ài),一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回歸方程 其中為常數(shù))進(jìn)行模擬.

(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價(jià)格為150/箱,試預(yù)測(cè)該新奇水果100箱的利潤(rùn)是多少元.|

(Ⅱ)據(jù)統(tǒng)計(jì),10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.

i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計(jì)恰有1天的水果箱數(shù)在內(nèi)的概率;

(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)

參考數(shù)據(jù)與公式:設(shè),則

0.54

6.8

1.53

0.45

線性回歸直線中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),證明:對(duì)

(2)若函數(shù)上存在極值,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若,試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)平行班,每班50.陳老師采用A,B兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為成績(jī)優(yōu)秀”.

1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均成績(jī)優(yōu)秀的概率;

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2x2列聯(lián)表,并判斷是否有的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).


甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀




成績(jī)不優(yōu)秀




總計(jì)




附:

/tr>

P

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程只有一個(gè)實(shí)數(shù)根,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果無(wú)窮數(shù)列{an}的所有項(xiàng)恰好構(gòu)成全體正整數(shù)的一個(gè)排列,則稱數(shù)列{an}具有性質(zhì)P

(Ⅰ)若ankN*),判斷數(shù)列{an}是否具有性質(zhì)P,并說(shuō)明理由,

(Ⅱ)若數(shù)列{an}具有性質(zhì)P,求證:{an}中一定存在三項(xiàng)aiaj,akijk)構(gòu)成公差為奇數(shù)的等差數(shù)列;

(Ⅲ)若數(shù)列{an}具有性質(zhì)P,則{an}中是否一定存在四項(xiàng)aiajak,al,(ijkl)構(gòu)成公差為奇數(shù)的等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角的對(duì)邊分別為,且,若的面積為,則的最小值為( )

A.B.C.D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案