精英家教網 > 高中數學 > 題目詳情

【題目】2021年福建省高考實行“”模式.”模式是指:“3”為全國統考科目語文、數學、外語,所有學生必考;“1”為首選科目,考生須在高中學業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學、生物、政治、地理4個科目中選擇2科,共計6個考試科目.

1)若學生甲在“1”中選物理,在“2”中任選2科,求學生甲選化學和生物的概率;

2)若學生乙在“1”中任選1科,在“2”中任選2科,求學生乙不選政治但選生物的概率.

【答案】12

【解析】

1)列舉所有可能,找出滿足題意的可能,利用古典概型概率公式計算;

2)與(1)相同的方法,列舉,找出滿足題意的結果,利用古典概型計算結果.

1)記“學生甲選化學和生物”為事件A.

學生甲在“1”中選物理,在“2”中任選2科的基本事件有:

(生,化),(生,政),(生,地),(化,政),(化,地),(政,地),共6.

事件A包含的基本事件有:(生,化),共1

由古典概型概率計算公式得.

所以學生甲選化學和生物的概率是.

2)記“學生乙不選政治但選生物”為事件B.

學生乙在“1”中任選1科,在“2”中任選2科的基本事件有:

(物,生,化),(物,生,政),(物,生,地),(物,化,政),(物,化,地),

(物,政,地),(史,生,化),(史,生,政),(史,生,地),(史,化,政),

(史,化,地),(史,政,地),共12.

事件B包含的基本事件有:(物,生,化),(物,生,地),(史,生,化),(史,生,地),共4.

由古典概型概率計算公式得.

所以學生乙不選政治但選生物的概率是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點, 的頂點在棱與棱上運動,有以下四個命題:

A.平面 ; B.平面⊥平面;

C 在底面上的射影圖形的面積為定值;

D 在側面上的射影圖形是三角形.其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某籃球隊有名隊員,其中有名隊員打前鋒,有名隊員打后衛(wèi),甲、乙兩名隊員既能打前鋒又能打后衛(wèi).若出場陣容為名前鋒,名后衛(wèi),則不同的出場陣容共有______種.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場營銷人員對某商品進行市場營銷調查,發(fā)現每回饋消費者一定的點數,該商品每天的銷量就會發(fā)生一定的變化,經過統計得到下表:

回饋點數

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(1)經分析發(fā)現,可用線性回歸模型擬合該商品每天的銷量(百件)與返還點數之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測若回饋6個點時該商品每天銷量;

(2)已知節(jié)日期間某地擬購買該商品的消費群體十分龐大,營銷調研機構對其中的200名消費者的返點數額的心理預期值進行了抽樣調查,得到如下頻數表:

返還點數預期值區(qū)間

頻數

20

60

60

30

20

10

(i)求這200位擬購買該商品的消費者對返點點數的心理預期值的樣本平均數及中位數的估計值(同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到0.1);

(ii)將對返點點數的心理預期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,設抽出的3人中“欲望緊縮型”消費者的人數為隨機變量,求的分布列及數學期望.

參考公式及數據:①,;②.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

(1)討論函數的單調性;

(2)若有兩個相異零點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求的單調區(qū)間;

2)當,,且,關于的方程有唯一實數解,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點G(x,y)滿足

(1)求動點G的軌跡C的方程;

(2)過點Q(1,1)作直線L與曲線交于不同的兩點,且線段中點恰好為Q.求的面積;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠抽取了一臺設備在一段時間內生產的一批產品,測量一項質量指標值,繪制了如圖所示的頻率分布直方圖.

(1)計算該樣本的平均值,方差;(同一組中的數據用該組區(qū)間的中點值作代表)

(2)根據長期生產經驗,可以認為這臺設備在正常狀態(tài)下生產的產品的質量指標值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個產品,記其質量指標值為.若,則認為該產品為一等品;,則認為該產品為二等品;若,則認為該產品為不合格品.已知設備正常狀態(tài)下每天生產這種產品1000個.

(i)用樣本估計總體,問該工廠一天生產的產品中不合格品是否超過?

(ii)某公司向該工廠推出以舊換新活動,補足50萬元即可用設備換得生產相同產品的改進設備.經測試,設備正常狀態(tài)下每天生產產品1200個,生產的產品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產一個一等品可獲得利潤50元,生產一個二等品可獲得利潤30元,生產一個不合格品虧損40元,試為工廠做出決策,是否需要換購設備?

參考數據:①;②;③,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E,點A,B分別是橢圓E的左頂點和上頂點,直線AB與圓Cx2+y2c2相離,其中c是橢圓的半焦距,P是直線AB上一動點,過點P作圓C的兩條切線,切點分別為MN,若存在點P使得△PMN是等腰直角三角形,則橢圓離心率平方e2的取值范圍是_____

查看答案和解析>>

同步練習冊答案