【題目】已知?jiǎng)狱c(diǎn)G(x,y)滿足

(1)求動(dòng)點(diǎn)G的軌跡C的方程;

(2)過點(diǎn)Q(1,1)作直線L與曲線交于不同的兩點(diǎn),且線段中點(diǎn)恰好為Q.求的面積;

【答案】(1);(2)

【解析】

1)先由橢圓的定義得知軌跡為橢圓,并利用橢圓定義求出,從已知條件中得出,并求出值,結(jié)合橢圓焦點(diǎn)位置得出橢圓的標(biāo)準(zhǔn)方程;

2)由已知條件得知直線的斜率存在,并設(shè)直線的方程為,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由的中點(diǎn)求出的值,從而得出直線的方程,再利用弦長(zhǎng)公式求出,由點(diǎn)到直線的距離公式計(jì)算出原點(diǎn)到直線的距離,再利用三角形的面積公式可求出的面積。

1)由動(dòng)點(diǎn)滿足可知,

動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,其方程為;

2)由于直線與曲線相交所得線段中點(diǎn)恰好為可知,

直線的斜率一定存在,設(shè)直線的方程為,

聯(lián)立,消去可得,

所以

又線段中點(diǎn)的橫坐標(biāo)為1,,解得

, 直線的方程為

弦長(zhǎng),原點(diǎn)到直線的距離為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動(dòng)直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別為的中點(diǎn),過任作一個(gè)平面分別與直線相交于點(diǎn),則下列結(jié)論正確的是___________.①對(duì)于任意的平面,都有直線,相交于同一點(diǎn);②存在一個(gè)平面,使得點(diǎn)在線段上,點(diǎn)在線段的延長(zhǎng)線上; ③對(duì)于任意的平面,都有;④對(duì)于任意的平面,當(dāng)在線段上時(shí),幾何體的體積是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求的極值;

(Ⅱ)若在區(qū)間恒成立,求的取值范圍;

(Ⅲ)判斷函數(shù)的零點(diǎn)個(gè)數(shù).(直接寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為,一雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),且它的實(shí)軸長(zhǎng)等于虛軸長(zhǎng),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為,其中軸的同一側(cè).

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在題設(shè)中的點(diǎn),使得?若存在, 求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

為真為真的充分不必要條件:②為假為真的充分不必要條件;③為真為假的必要不充分條件;④為真為假的必要不充分條件.

其中,正確的結(jié)論是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x3(a0,且a≠1)

1)討論f(x)的奇偶性;

2)求a的取值范圍,使f(x)0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為;選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場(chǎng)比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場(chǎng)比賽獲得第三名

B. 每場(chǎng)比賽第一名得分

C. 甲可能有一場(chǎng)比賽獲得第二名

D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為3的正方體中,

求兩條異面直線所成角的余弦值;

求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案