【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是(
A.
B.
C.
D.

【答案】A
【解析】解:因為 f(x+2)=f(x)﹣f(1),且f(x)是定義域為R的偶函數(shù) 令x=﹣1 所以 f(﹣1+2)=f(﹣1)﹣f(1),f(﹣1)=f(1)
即 f(1)=0 則有,f(x+2)=f(x)
f(x)是周期為2的偶函數(shù),
當x∈[2,3]時,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2
圖象為開口向下,頂點為(3,0)的拋物線
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
∵f(x)≤0,
∴g(x)≤0,可得a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
令g(x)=loga(|x|+1),
如圖要求g(2)>f(2),可得

就必須有 loga(2+1)>f(2)=﹣2,
∴可得loga3>﹣2,∴3< ,解得﹣ <a< 又a>0,
∴0<a< ,
故選A;
根據(jù)定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),可以令x=﹣1,求出f(1),再求出函數(shù)f(x)的周期為2,當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,畫出圖形,根據(jù)函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,利用數(shù)形結合的方法進行求解;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【選修4—4:坐標系與參數(shù)方程】

將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.

Ⅰ)寫出C的參數(shù)方程;

設直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當a=1時,求f(x)的單調區(qū)間和極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時,有 成立.
(1)判斷f(x)在[﹣1,1]上的單調性,并證明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的三內角A、B、C的對邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大小;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,其公差為﹣2,且a7是a3與a9的等比中項,Sn為{an}的前n項和,n∈N* , 則S10的值為(
A.﹣110
B.﹣90
C.90
D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現(xiàn)從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綜合題。
(1)利用“五點法”畫出函數(shù) 內的簡圖

x

x+

y


(2)若對任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設g(x)是函數(shù)f(x)的導函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內有零點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案