【題目】給出下列四個命題:

三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球是必然事件

為某一實數(shù)時可使是不可能事件

明天全天要下雨是必然事件

100個燈泡(6個是次品)中取出5個,5個都是次品是隨機事件.

其中正確命題的個數(shù)是(

A.0B.1C.2D.3

【答案】D

【解析】

利用必然事件的概念可以判斷①是正確的命題,③是偶然事件,利用不可能事件的概念判斷②正確,利用隨機事件的概念判斷④正確.

對于①,三個球分為兩組,有兩種情況,,所以①是正確的命題;

對于②,任意實數(shù)都有,所以②是正確的命題;

對于③,明天全天要下雨是偶然事件,所以③是錯誤的命題;

對于④,100個燈泡中取出5個,5個都是次品,發(fā)生與否是隨機的,所以④是正確的命題.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點在線段上運動,則下列判斷中正確的是( )

①平面平面;

平面;

③異面直線所成角的取值范圍是;

④三棱錐的體積不變.

A. ①② B. ①②④ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱,側(cè)面為菱形,.

(1)求證:平面

(2)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】港珠澳大橋是中國建設(shè)史上里程最長,投資最多,難度最大的跨海橋梁項目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,,內(nèi)的頻率之比為.

(1)求這些橋梁構(gòu)件質(zhì)量指標值落在區(qū)間內(nèi)的頻率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種橋梁構(gòu)件中隨機抽取件,記這件橋梁構(gòu)件中質(zhì)量指標值位于區(qū)間內(nèi)的橋梁構(gòu)件件數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人輪流吹同一只氣球,當且僅當氣球內(nèi)的氣體體積單位毫升大于2014時,氣球會被吹破先由甲開始吹入1毫升氣體,約定以后每次吹入的氣體體積為上一次體積的2倍或,且吹入的氣體體積為整數(shù)

(1)若誰先吹破氣球誰輸,問誰有必勝策略?證明你的結(jié)論

(2)若在不吹破氣球的前提下,約定單次吹入的氣體體積最大者為贏家如果吹入的體積相同,則最先吹出最大體積者為贏家).誰有必勝策略證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線M的極坐標方程為.

1)求C的極坐標方程和曲線M的直角坐標方程;

2)若MC只有1個公共點P,求m的值與P的極坐標(,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的農(nóng)機具零配件,為了預測今年7月份該型號農(nóng)機具零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度1月份至6月份該型號農(nóng)機具零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號農(nóng)機具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結(jié)果精確到0.1

參考公式:回歸直線方程,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,是邊長,的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,上被切去的小正方形的兩個頂點,設(shè).

1)將長方體盒子體積表示成的函數(shù)關(guān)系式,并求其定義域;

2)當為何值時,此長方體盒子體積最大?并求出最大體積.

查看答案和解析>>

同步練習冊答案