精英家教網 > 高中數學 > 題目詳情

定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.

(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,且側面PAD⊥底面ABCD,E 為側棱PD的中點。
(1)證明:PB//平面EAC;
(2)若AD="2AB=2," 求直線PB與平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)

如圖,在三棱柱中,底面,,E、F分別是棱的中點.
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點滿足平面//平面,試確定點的位置,并說明理由;
(3)證明:⊥A1C.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知四棱錐,底面為菱形,
平面,分別是的中點.
(1)證明:;
(2)若上的動點,與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,底面

(1)證明:;
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐的底面是邊長為1的正方形,,點E在棱PB上.

(1)求證:平面;
(2)當且E為PB的中點時,求AE與平面PDB
所成的角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在等腰直角三角形中, =900 ="6," 分別是,上的點,  的中點.將沿折起,得到如圖所示的四棱椎,其中

(1)證明:;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案