(本小題滿分14分)
如圖,在三棱柱中,底面,,E、F分別是棱的中點.
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點滿足平面//平面,試確定點的位置,并說明理由;
(3)證明:⊥A1C.
(1)詳見解析;(2)是線段的中點;(3)詳見解析.
解析試題分析:(1)求證:AB⊥平面AA1 C1C,證明線面垂直,只需證明線線垂直,即在平面找兩條直線與垂直,由已知平面,故,且,故可證得結(jié)論;(2)線段上的點滿足平面平面,且面面,面面,由面面平行的性質(zhì)可以得到,在中,已知是的中點,由中位線定理,即可確定點的位置;(3)證明:⊥A1C,證明線線垂直,只需證明一條直線垂直于另一條直線所在的平面,注意到四邊形是一個正方形,則,易證,可得平面,由(2)知平面平面,從而得平面,即可證得結(jié)論.
(1)底面,, 2分
,,面. 4分
(2)面//面,面面,面面,
//, 7分
在中是棱的中點,
是線段的中點. 8分
(3)三棱柱中
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,底面,,為的中點, 為的中點,,.
(1)求證:平面;
(2)求與平面成角的正弦值;
(3)設(shè)點在線段上,且,平面,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.
(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體中,四邊形為正方形,四邊形是直角梯形,,平面,.
(1)求證:平面;
(2)求平面與平面所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱的底面是邊長為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長是,D是AC的中點。
(1)求證:平面;
(2)求二面角的大;
(3)求直線與平面所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com