已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍;
(1) ;(2).
解析試題分析:(1)通過對(duì)函數(shù)求導(dǎo),判函數(shù)的單調(diào)性,可求解函數(shù)的最大值,需注意解題時(shí)要先寫出函數(shù)的定義域,切記“定義域優(yōu)先”原則;(2) 將的零點(diǎn)問題轉(zhuǎn)化為與圖象交點(diǎn)個(gè)數(shù)問題,注意函數(shù)的圖象恒過定點(diǎn),由圖象知當(dāng)直線的斜率為時(shí),直線與圖象沒有交點(diǎn),當(dāng)時(shí),求出函數(shù)的最大值,讓最大值小于零即可說明函數(shù)沒有零點(diǎn).
試題解析:(1)當(dāng)時(shí), 2分
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/8/if9bz1.png" style="vertical-align:middle;" />,令,
∵當(dāng),當(dāng),
∴內(nèi)是增函數(shù),上是減函數(shù)
∴當(dāng)時(shí),取最大值 5分
(2)①當(dāng),函數(shù)圖象與函數(shù)圖象有公共點(diǎn),
∴函數(shù)有零點(diǎn),不合要求; 7分
②當(dāng)時(shí), 8分
令,∵,
∴內(nèi)是增函數(shù),上是減函數(shù), 10分
∴的最大值是,
∵函數(shù)沒有零點(diǎn),∴,, 11分
因此,若函數(shù)沒有零點(diǎn),則實(shí)數(shù)的取值范圍 12分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的最值;2.函數(shù)與方程思想.3.數(shù)形結(jié)合思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)求證:函數(shù)在上單調(diào)遞增;
(2)若函數(shù)有四個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],[0,1],使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若,使成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),取得極值.
① 若,求函數(shù)在上的最小值;
② 求證:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 ().
(1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;
(2)若在上的最小值為,求的值;
(3)若在上恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.(,為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com