已知函數(shù),.
(Ⅰ)求的極值;
(Ⅱ)當(dāng)時,若不等式在上恒成立,求的取值范圍.
(Ⅰ)有極大值為;(Ⅱ).
解析試題分析:(Ⅰ)首先明確函數(shù)的定義域,然后利用求導(dǎo)的方法研究函數(shù)的單調(diào)性,進而確定函數(shù)的極值;(Ⅱ)利用轉(zhuǎn)化思想將原不等式轉(zhuǎn)化為在上恒成立,然后借助構(gòu)造函數(shù)求解函數(shù)的最大值進而探求的取值范圍.
試題解析:(Ⅰ)函數(shù)的定義域為。 1分
,令得 3分
當(dāng)為增函數(shù). 4分
當(dāng)為減函數(shù), 5分
可知有極大值為 6分
(Ⅱ)由于,所以不等式在區(qū)間上恒成立,即在上恒成立,
設(shè)
由(Ⅰ)知,在處取得最大值,∴ 12分
【參考題】(Ⅲ)已知且,求證:.
∵,由上可知在上單調(diào)遞增,
∴ ,即 ①,
同理 ②
兩式相加得,∴
考點:1.函數(shù)的極值;2.不等式恒成立問題;3。導(dǎo)數(shù)的應(yīng)用。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)若函數(shù)沒有零點,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在的函數(shù),在處的切線斜率為
(Ⅰ)求及的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(Ⅰ)若函數(shù)在上單調(diào)遞減,在區(qū)間單調(diào)遞增,求的值;
(Ⅱ)若函數(shù)在上有兩個不同的極值點,求的取值范圍;
(Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,函數(shù)取得極大值,求實數(shù)的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)存在導(dǎo)數(shù),則存在
,使得. 試用這個結(jié)論證明:若函數(shù)
(其中),則對任意,都有;
(Ⅲ)已知正數(shù)滿足,求證:對任意的實數(shù),若時,都
有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)設(shè),求的單調(diào)區(qū)間;
(Ⅱ) 設(shè),且對于任意,.試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)=x+ax2+blnx,曲線y =過P(1,0),且在P點處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com