【題目】有著“中國碳谷”之稱的安徽省淮北市,名優(yōu)特產眾多,其中“塔山石榴”因其青皮軟籽、籽粒飽滿、晶瑩剔透、汁多味甘而享譽天下.現調查表明,石榴的甜度與海拔、日照時長、晝夜溫差有著極強的相關性,分別用表示石榴甜度與海拔、日照時長、溫差的相關程度,并對它們進行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標的值評定石榴的等級,若則為一級;若則為二級;若則為三級.近年來,周邊各地市也開始發(fā)展石榴的種植,為了了解目前石榴在周邊地市的種植情況,研究人員從不同地市隨機抽取了12個石榴種植園,得到如下結果:
種植園編號 | A | B | C | D | E | F |
種植園編號 | G | H | I | J | K | L |
(1)若有石榴種植園120個,估計等級為一級的石榴種植園的數量;
(2)在所取樣本的二級和三級石榴種植園中任取2個,表示取到三級石榴種植園的數量,求隨機變量的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】如圖是某公司一種產品的日銷售量(單位:百件)關于日最高氣溫(單位:)的散點圖.
數據:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)請?zhí)蕹唤M數據,使得剩余數據的線性相關性最強,并用剩余數據求日銷售量關于日最高氣溫的線性回歸方程;
(2)根據現行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補貼.已知某日該產品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當天是否可享受高溫補貼?
附:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海域有兩個島嶼,島在島正東4海里處,經多年觀察研究發(fā)現,某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系.
(1)求曲線的標準方程;
(2)某日,研究人員在兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】黨的十九大明確把精準脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村扶貧. 此幫扶單位為了了解某地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機調查了40個貧困戶,得到貧困戶的滿意度評分如下:
貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數據為92.
(1)請你列出抽到的10個樣本的評分數據;
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“級”.運用樣本估計總體的思想,現從(1)中抽到的10個樣本的滿意度為“級”貧困戶中隨機地抽取2戶,求所抽到2戶的滿意度均評分均“超過80”的概率.
(參考數據:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,為橢圓E:的左、右焦點,過點的直線l與橢圓E有且只有一個交點T.
(1)求面積的取值范圍.
(2)若有一束光線從點射出,射在直線l上的T點上,經過直線l反射后,試問反射光線是否恒過定點?若是,請求出該定點;若否,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為慶祝建國70周年,校園文化節(jié)舉行有獎答題活動,現有A,B兩種題型,從A類題型中抽取1道,從B類題型中抽取2道回答,答對3道題獲新華書店面值為15元的圖書代金券,答對2道題獲面值為10元的圖書代金券,答對1道題獲面值為5元的圖書代金券,沒有答對獲面值為1元的圖書代金券(作為鼓勵).甲同學參加此活動答對A類題的概率為,答對B類題的概率為.
(Ⅰ)求甲答對1道題的概率;
(Ⅱ)設甲參加一次活動所獲圖書代金券的面值為隨機變量X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,己知拋物線的焦點為,點是第一象限內拋物線上的一點,點的坐標為
(1)若,求點的坐標;
(2)若為等腰直角三角形,且,求點的坐標;
(3)弦經過點,過弦上一點作直線的垂線,垂足為點,求證:“直線與拋物線相切”的一個充要條件是“為弦的中點”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com