【題目】已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40
B.0.30
C.0.35
D.0.25

【答案】B
【解析】在 組隨機數(shù)中表示三次投籃恰有兩次命中的有 ,共 組隨機數(shù),所以所求概率為 ,故選B.古典概型,首先通過列舉法得到5組隨機數(shù),然后根據(jù)概率公式得到結果。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一枚硬幣連續(xù)擲三次,至少出現(xiàn)一次正面朝上的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知N為自然數(shù)集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=﹣x+1,求函數(shù)y=f(x)的單調區(qū)間;
(2)若a>0,且對任意x∈(0,2e]時,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O是邊長為 的正方形ABCD的中心,點E、F分別是AD、BC的中點,沿對角線AC把正方形ABCD折成直二面角D﹣AC﹣B; (Ⅰ)求∠EOF的大;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求點D到面EOF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=|ax﹣4|﹣|ax+8|,a∈R
(Ⅰ)當a=2時,解不等式f(x)<2;
(Ⅱ)若f(x)≤k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐 中,平面 平面 為等邊三角形, 分別為 的中點.

(1)求證: 平面 .
(2)求證:平面 平面 .
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的圓交AB于G,點P在 上運動(如圖).若 ,其中λ,μ∈R,則6λ+μ的取值范圍是(
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是 . ① f(﹣ )<f(﹣
f( )<f(
③f(0)>2f(
④f(0)> f(

查看答案和解析>>

同步練習冊答案