精英家教網 > 高中數學 > 題目詳情

【題目】已知N為自然數集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}

【答案】A
【解析】∵P={1,4,7,10,13},Q={2,4,6,8,10},
={0,1,3,5,7,9,11,12,13,…}.∴P∩ ={1,7,13}.
所以答案是:A.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(a﹣ )x2+lnx(a為實數).
(1)當a=0時,求函數f(x)在區(qū)間[ ,e]上的最大值和最小值;
(2)若對任意的x∈(1,+∞),g(x)=f(x)﹣2ax<0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 + + =
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在的直線上.

(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正方形的中心為直線 的交點,正方形一邊所在直線的方程為 ,求其他三邊所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .(Ⅰ)求函數 的最小正周期及單調遞增區(qū)間;(Ⅱ)將 的圖像向右平移 個單位得到函數 的圖像,若 ,求函數 的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數 的圖象為C,如下結論:
①圖象C關于直線 對稱; ②圖象C關于點( ,0)對稱;③函數 在區(qū)間( 內是增函數;④由 的圖角向右平移 個單位長度可以得到圖象C。其中正確結論的序號是。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數,據此估計,該運動員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40
B.0.30
C.0.35
D.0.25

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為 (α為參數).以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程為 . (Ⅰ)求直線l的直角坐標方程和曲線C的普通方程;
(Ⅱ)設點P為曲線C上任意一點,求點P到直線l的距離的最大值.

查看答案和解析>>

同步練習冊答案