已知橢圓的兩個焦點(diǎn)分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點(diǎn)M、N,且線段MN中點(diǎn)的橫坐標(biāo)為–,求直線l傾斜角的取值范圍。

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)設(shè)橢圓方程為
由已知,,由解得a=3,   
為所求 
(Ⅱ)解法一:設(shè)直線l的方程為y=kx+b(k≠0)
解方程組
將①代入②并化簡,得 
       
將④代入③化簡后,得。                           
解得   ∴ , 所以傾斜角  。                            
解法二:(點(diǎn)差法)設(shè)的中點(diǎn)為在橢圓內(nèi),且直線l不與坐標(biāo)軸平行。
因此,
,
∴兩式相減得 
即  
。所以傾斜角
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:典型題,涉及直線與橢圓的位置關(guān)系問題,通過聯(lián)立方程組得到一元二次方程,應(yīng)用韋達(dá)定理可實現(xiàn)整體代換,簡化解題過程。涉及橢圓上兩點(diǎn)問題,可以利用“點(diǎn)差法”,建立連線的斜率與a,b的關(guān)系。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個焦點(diǎn),并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的一個頂點(diǎn)為,離心率為.直線與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)△AMN得面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)

過拋物線焦點(diǎn)垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點(diǎn)F的直線交拋物線于 兩點(diǎn)。過、作準(zhǔn)線的垂線,垂足分別為.

(1)求出拋物線的通徑,證明都是定值,并求出這個定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個焦點(diǎn)為,其短軸上的一個端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)作直線使得與橢圓都只有一個交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

同步練習(xí)冊答案