(本題滿分12分)給定橢圓:,稱圓心在原點,半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點是橢圓的“準(zhǔn)圓”上的一個動點,過動點作直線使得與橢圓都只有一個交點,且分別交其“準(zhǔn)圓”于點,求證:為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過點的直線與橢圓交于,兩點.
① 若直線垂直于軸,求的大小;
② 若直線與軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個焦點分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標(biāo)為–,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標(biāo)原點), 過點作一斜率為的直線交橢圓于、兩點(其中點在軸上方,點在軸下方) .
(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點為點關(guān)于軸的對稱點,判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點使直線與軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知雙曲線的兩個焦點為、點在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 設(shè)橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點,實半軸長為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個不同的交點和,且
(其中為原點),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com