【題目】為了進一步提升基層黨員自身理論素養(yǎng),市委組織部舉辦了黨建主題知識競賽(滿分120分),從參加競賽的黨員中采用分層抽樣的方法抽取若干名黨員,統(tǒng)計他們的競賽成績得到下面頻率分布表:
成績/分 | |||||
頻率 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 |
已知成績在區(qū)間內(nèi)的有人.
(1)將成績在內(nèi)的定義為“優(yōu)秀”,在內(nèi)的定義為“良好”,請將列聯(lián)表補充完整.
男黨員 | 女黨員 | 合計 | |
優(yōu)秀 | |||
良好 | 15 | ||
合計 | 25 |
(2)判斷是否有的把握認為競賽成績是否優(yōu)秀與性別有關?
(3)若在抽取的競賽成績?yōu)閮?yōu)秀的黨員中任意抽取2人進行黨建知識宣講,求被抽取的這兩人成績都在內(nèi)的概率.
附:
| 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)根據(jù)頻率分布表以及頻數(shù)等于總數(shù)與頻率乘積,計算數(shù)據(jù)并填入表格,(2)根據(jù)卡方公式求,對照數(shù)據(jù)確定把握率,(3)先確定優(yōu)秀黨員總人數(shù),再確定成績在人數(shù),最后根據(jù)組合數(shù)以及古典概型概率公式求結果.
(1)
男黨員 | 女黨員 | 合計 | |
優(yōu)秀 | 20 | 10 | 30 |
良好 | 5 | 15 | 20 |
合計 | 25 | 25 | 50 |
(2),
故沒有的把握認為成績是否優(yōu)秀與性別有關。
(3)競賽成績在,,內(nèi)人數(shù)分別為15, 10, 5,
則所求概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的方程為,直線過定點P(2,0),斜率為。當為何值時,直線與拋物線:
(1)只有一個公共點;
(2)有兩個公共點;
(3)沒有公共點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向左平移1個單位,再向下平移1個單位得到函數(shù),則函數(shù)的圖象與函數(shù)圖象所有交點的橫坐標之和等于( )
A.12B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有窮數(shù)列中的每一項都是-1,0,1這三個數(shù)中的某一個數(shù),,且,則有窮數(shù)列中值為0的項數(shù)是( )
A. 1000B. 1010C. 1015D. 1030
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象做怎樣的變換可以得到函數(shù)的圖象;
(3)若方程在上有兩個不相等的實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過點并且與圓相外切,動圓圓心的軌跡為.
(Ⅰ)求曲線的軌跡方程;
(Ⅱ)過點的直線與軌跡交于、兩點,設直線,設點,直線交于,求證:直線經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為: (為參數(shù)).
(1)求曲線的直角坐標方程與曲線的普通方程;
(2)將曲線經(jīng)過伸縮變換后得到曲線,若, 分別是曲線和曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線,的極坐標方程分別為,.
(1)將直線的參數(shù)方程化為極坐標方程,將的極坐標方程化為參數(shù)方程;
(2)當時,直線與交于,兩點,與交于,兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com