【題目】設(shè)函數(shù)f(x)=2sin(2x+φ)(0<φ<π),y=f(x)圖象的一個對稱中心是 .
(1)求φ;
(2)在給定的平面直角坐標(biāo)系中作出該函數(shù)在x∈[0,π]的圖象;
(3)求函數(shù)f(x)≥1(x∈R)的解集.
【答案】
(1)解:∵ 是函數(shù)y=f(x)的圖象的對稱中心,
∴ ,∴ ,
∴ ∵0<φ<π,∴ ,
即 .
(2)解:列表
x | 0 | π | ||||
π | 2π | |||||
f(x) | 2 | 0 | ﹣2 | 0 |
(3)解:∵f(x)≥1,
即 , .
∴ ,
求函數(shù)f(x)≥1(x∈R)的解集是 .
【解析】(1)根據(jù)函數(shù)的對稱中心代入即可求φ;(2)利用五點法即可在給定的平面直角坐標(biāo)系中作出該函數(shù)在x∈[0,π]的圖象;(3)結(jié)合三角不等式進行求解即可.
【考點精析】解答此題的關(guān)鍵在于理解五點法作函數(shù)y=Asin(ωx+φ)的圖象的相關(guān)知識,掌握描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點
(1)求證:AB⊥面BEF;
(2)設(shè)PA=h,若二面角E﹣BD﹣C大于45°,求h的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),且f(1)= .
(1)當(dāng)n∈N*時,求f(n)的表達式;
(2)設(shè)an=nf(n),n∈N* , 求證a1+a2+a3+…+an<2;
(3)設(shè)bn=(9﹣n) ,n∈N* , Sn為bn的前n項和,當(dāng)Sn最大時,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.( )
D.(﹣∞,﹣ ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA⊥圓O所在的平面,C是圓O上的點.
(1)求證:BC⊥平面PAC;
(2)若Q為PA的中點,G為△AOC的重心,求證:QG∥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移 個單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD一條邊AB所在方程為x+3y﹣5=0,另一邊CD所在直線方程為x+3y+7=0,
(Ⅰ)求正方形中心G所在的直線方程;
(Ⅱ)設(shè)正方形中心G(x0 , y0),當(dāng)正方形僅有兩個頂點在第一象限時,求x0的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com