精英家教網 > 高中數學 > 題目詳情

【題目】某中學開展勞動實習,學生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BCDG,垂足為C,tanODC=,EF=12 cmDE=2 cm,A到直線DEEF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2

【答案】

【解析】

利用求出圓弧所在圓的半徑,結合扇形的面積公式求出扇形的面積,求出直角的面積,陰影部分的面積可通過兩者的面積之和減去半個單位圓的面積求得.

,由題意,,所以,

因為,所以

因為,所以

因為與圓弧相切于點,所以,

為等腰直角三角形;

在直角中,,

因為,所以

解得;

等腰直角的面積為;

扇形的面積,

所以陰影部分的面積為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數據的收集和整理在當今社會起到了舉足輕重的作用,它用統(tǒng)計的方法來幫助人們分析以往的行為習慣,進而指導人們接下來的行動.

某支足球隊的主教練打算從預備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數,如下表:

場次

第一場

第二場

第三場

第四場

第五場

28

33

36

38

45

39

31

43

39

33

1)根據這兩名球員近期5場比賽的傳球成功次數,完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標系中畫出兩名球員的傳球成功次數的散點圖;

2)求出甲、乙兩名球員近期5場比賽的傳球成功次數的平均值和方差;

3)主教練根據球員每場比賽的傳球成功次數分析出球員在場上的積極程度和技術水平,同時根據多場比賽的數據也可以分析出球員的狀態(tài)和潛力.你認為主教練應選哪位球員?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數,其中e=2.71828…為自然對數的底數.

(Ⅰ)證明:函數上有唯一零點;

(Ⅱ)記x0為函數上的零點,證明:

(。;

(ⅱ)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數方程為為參數),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線C的極坐標方程;

2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率為,且過點A21).

1)求C的方程:

2)點M,NC上,且AMAN,ADMND為垂足.證明:存在定點Q,使得|DQ|為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,證明.

1存在唯一的極小值點;

2的極小值點為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數R).

1)當時,求函數的單調區(qū)間;

2)若對任意實數,當時,函數的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案