求經(jīng)過兩圓的交點,且圓心在直線上的圓的方程.

解析試題分析:解法一:由兩圓方程聯(lián)立求得交點
設圓心,則由在直線上,求出
∴所求圓的方程為
解法二:同上求得
則圓心在線段的中垂線上,又在上,得圓心坐標.
∴所求圓的方程為
考點:本題考查了圓的方程求法
點評:此類問題常常利用圓系方程或直接求出公共弦所在的方程,避免了繁瑣的計算,屬基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長之比為3:1;③圓心到直線的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求圓心在直線3x+y-5=0上,并且經(jīng)過原點和點(4,0)的圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知圓心在軸上、半徑為的圓位于軸右側,且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù))在極坐標系(與直角坐標系xOy取相同的長度單位。且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為
(I)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
在直角坐標系中,直線為參數(shù)),在極坐標系中(以原點為極點,以軸正半軸為極軸),圓C的方程:
(1)求圓C的直角坐標方程;
(2)設圓C與直線交于兩點,點的坐標,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線為參數(shù)),圓(極軸與軸的非負半軸重合,且單位長度相同)。
⑴求圓心到直線的距離;
⑵若直線被圓截的弦長為,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
如圖,已知CF是以AB為直徑的半圓上的兩點,且CFCB,過CCD^AFAF的延長線與點D

(Ⅰ)證明:CD為圓O的切線;
(Ⅱ)若AD=3,AB=4,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點A(0,1),B(0,-1),C(1,0).動點P滿足:.
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當時,求的最大、最小值.

查看答案和解析>>

同步練習冊答案