【題目】某公司準備加大對一項產(chǎn)品的科技改造,經(jīng)過充分的市場調(diào)研與模擬,得到x,y之間的一組數(shù),其中x(單位:百萬元)是科技改造的總投入,y(單位:百萬元)是改造后的額外收益

x

2

3

5

7

8

y

5

8

12

14

16

其中,,是對當?shù)?/span>GDP的增長貢獻值.

1)若從五組數(shù)據(jù)中任取兩組,求至少有一組滿足的概率;

2)對于表中數(shù)據(jù),甲、乙兩個同學給出的擬合直線方程為:,,試用最小二乘法判斷哪條直線的擬合程度更好.(附:;Q越小擬合度越好.

【答案】12)直線擬合程度更好

【解析】

1)利用列舉法,結合古典概型概率計算公式,計算出所求概率.

2)計算出兩種擬合方法的殘差平方和,由此判斷出直線擬合程度更好.

1)由題知后兩組數(shù)據(jù)滿足條件

從五組數(shù)據(jù)中任意取出兩組有10種情況(如ABCDE中取出兩個有ABAC,AD,AE,BC,BD,BE,CD,CE,DE10種)

滿足條件有后面兩組,有一組滿足條件的有種(如AD,BD,CD,AE,BE,CE),兩組均可有1種(如DE)共有7種情況.

所以所求概率為

2)如表格

x

2

3

5

7

8

y

5

8

12

14

16

5

7

11

15

17

x

2

3

5

7

8

y

5

8

12

14

16

3.5

6

11

16

18.5

∴直線擬合程度更好

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1) 討論的單調(diào)性;

(2) ,當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)記兩個極值點為,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與過原點的直線恰有四個交點,設四個交點中橫坐標最大值為,則( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Γy22pxp0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足2,2

1)求拋物線Γ的方程;

2)已知經(jīng)過點A3,﹣2)的直線交拋物線ΓM,N兩點,經(jīng)過定點B3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|2x1|a

1)當a1時,解不等式fx)>x+1;

2)若存在實數(shù)x,使得fxfx+1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動點分別與兩個定點,的連線的斜率之積為.

(1)求動點的軌跡的方程;

(2)設過點的直線與軌跡交于兩點,判斷直線與以線段為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線

(1)求曲線的方程;

(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案