【題目】已知函數(shù),

求函數(shù)圖象上一點處的切線方程.

若方程內(nèi)有兩個不等實根,求實數(shù)a的取值范圍為自然對數(shù)的底數(shù)

求證,且

【答案】(1)(2)(3)詳見解析

【解析】

先求導(dǎo),再根據(jù)導(dǎo)數(shù)好的幾何意義即可求出;

方程內(nèi)有兩個不等實根,轉(zhuǎn)化為有兩個交點,利用導(dǎo)數(shù)求出函數(shù)的值域,結(jié)合圖象,即可求出a的范圍;

可得恒成立,即恒成立,分別令,3,,n,代入上式并相加可得.

解:,

,

函數(shù)圖象上一點處的切線方程為;

方程內(nèi)有兩個不等實根,

有兩個交點,

,,

,解得

時,,函數(shù)單調(diào)的遞增,

時,,函數(shù)單調(diào)的遞減,

,

,,

,

有兩個交點,

證明:由上遞增,在上遞減,

,

恒成立,

恒成立,

,3,,n,代入上式并相加可得

--

,且

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是由)個不同的正整數(shù)組成的集合,其中每個元素的質(zhì)因子不大于100,且中不存在四個不同的元素,使得這四個數(shù)之積是一個4次方數(shù),的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)若點的直角坐標為,求直線及曲線的直角坐標方程;

(2)若點在圓上,直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為,(為參數(shù),為直線傾斜角).以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)當時,直線的普通方程與曲線的直角坐標方程;

(2)已知點的直角坐標為,直線與曲線交于兩點,當面積最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標原點,橢圓C的左、右焦點分別為,,右頂點為A,上頂點為B,若,成等比數(shù)列,橢圓C上的點到焦點的距離的最大值為

求橢圓C的標準方程;

過該橢圓的右焦點作傾角為的直線與橢圓交于MN兩點,求的內(nèi)切圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),為自然對數(shù)的底數(shù).

(1)若曲線在點處的切線方程為,求實數(shù)的值;

(2)當時,若存在,使成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的方程為:

當極點到直線的距離為時,求直線的直角坐標方程;

若直線與曲線有兩個不同的交點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

1)確定的解析式;

2)判斷上的單調(diào)性,并用定義證明;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國清朝數(shù)學(xué)家李善蘭在1859年翻譯《代數(shù)學(xué)》中首次將譯做:函數(shù),沿用至今,為什么這么翻譯,書中解釋說凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”1930年美國人給出了我們課本中所學(xué)的集合論的函數(shù)定義,已知集合,,給出下列四個對應(yīng)法則,請由函數(shù)定義判斷,其中能構(gòu)成從的函數(shù)的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案