【題目】袋中裝有個大小相同的黑球和白球.已知從袋中任意摸出個球,至少得到個白球的概率是.

(1)求白球的個數(shù);

(2)從袋中任意摸出個球,記得到白球的個數(shù)為,求隨機變量的分布列和數(shù)學期望.

【答案】(1)5.

(2)分布列見解析;.

【解析】分析:(1)設黑球的個數(shù)為,則白球的個數(shù)為,記兩個都是黑球得的事件為,由可得結果;(2)離散型隨機變量的取值可能為:,結合組合知識,利用古典概型概率公式根據(jù)獨立重復試驗概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得的數(shù)學期望.

詳解:(1)設黑球的個數(shù)為,則白球的個數(shù)為

記兩個都是黑球得的事件為,

則至少有一個白球的事件與事件為對立事件

所以

解得

所以白球的個數(shù)為.

(2)離散型隨機變量的取值可能為:

所以的分布列為

因為服從超幾何分布,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學一起去向老師詢問各自的分班情況,老師說:你們四人中有位分到班,位分到班,我現(xiàn)在給甲看乙、丙的班級,給乙看丙的班級,給丁看甲的班級.看后甲對大家說:我還是不知道我的班級,根據(jù)以上信息,則( )

A. 乙可以知道四人的班級 B. 丁可以知道四人的班級

C. 乙、丁可以知道對方的班級 D. 乙、丁可以知道自己的班級

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(1)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知邊長為 的菱形ABCD中,∠BAD=60°,沿對角線BD折成二面角A﹣BD﹣C為120°的四面體ABCD,則四面體的外接球的表面積為(
A.25π
B.26π
C.27π
D.28π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知是奇函數(shù),求常數(shù)m的值;

(2)畫出函數(shù)的圖象,并利用圖象回答:k為何值時,方程 無解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象過點,對任意滿足,且有最小值為

1)求的解析式;

2)求函數(shù)在區(qū)間[0,1]上的最小值,其中;

3)在區(qū)間[1,3]上,的圖象恒在函數(shù)的圖象上方,試確定實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:①設有一個回歸方程,變量增加一個單位時,平均增加個單位;②線性回歸直線必過必過點;③在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有的可能患肺;其中錯誤的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產的某批產品的銷售量萬件(生產量與銷售量相等)與促銷費用萬元滿足 (其中,為正常數(shù)).已知生產該批產品還需投入成本萬元(不含促銷費用),產品的銷售價格定為元/件

(1)將該產品的利潤萬元表示為促銷費用萬元的函數(shù);(注:利潤=銷售收入-促銷費-投入成本)

(2)當促銷費用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C 的焦點為F,過F且斜率為的直線l交于A,B兩點,

(1)求的方程;

(2)求過點AB且與的準線相切的圓的方程.

查看答案和解析>>

同步練習冊答案