【題目】已知曲線上動點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù),若過的動直線與曲線相交于兩點(diǎn)
(1)說明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由
【答案】(1)曲線是橢圓,它的標(biāo)準(zhǔn)方程為;(2)存在點(diǎn)滿足題意
【解析】
(1)先設(shè)動點(diǎn)坐標(biāo)為,根據(jù)題意列出等式,化簡整理即可求出結(jié)果;
(2)分情況討論如下:當(dāng)直線與軸垂直時,易得點(diǎn)必在軸上.;當(dāng)直線與軸垂直時,易得點(diǎn)的坐標(biāo)只可能是;再證明直線斜率存在且時均有即可.
(1)設(shè)動點(diǎn)坐標(biāo)為
點(diǎn)到直線的距離為.依題意可知
則
化簡得
所以曲線是橢圓,它的標(biāo)準(zhǔn)方程為
(2)①當(dāng)直線與軸垂直時,由橢圓的對稱性可知,又因?yàn)?/span>,則
從而點(diǎn)必在軸上.
②當(dāng)直線與軸垂直時,則,由①可設(shè),
由得,解得(舍去),或.
則點(diǎn)的坐標(biāo)只可能是.
下面只需證明直線斜率存在且時均有即可.
設(shè)直線的方程為,代入得.
設(shè)
所以
設(shè)點(diǎn)關(guān)于軸對稱的點(diǎn)坐標(biāo)
因?yàn)橹本的斜率
同理得直線的斜率
,三點(diǎn)共線.
故.
所以存在點(diǎn)滿足題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河北省高考改革后高中學(xué)生實(shí)施選課走班制,若某校學(xué)生選擇物理學(xué)科的人數(shù)為800人,高二期中測試后,由學(xué)生的物理成績,調(diào)研選課走班制學(xué)生的學(xué)習(xí)情況及效果,為此決定從這800人中抽取人,其頻率分布情況如下:
分?jǐn)?shù) | 頻數(shù) | 頻率 |
8 | 0.08 | |
18 | 0.18 | |
20 | 0.2 | |
0.24 | ||
15 | ||
10 | 0.10 | |
5 | 0.05 | |
合計(jì) | 1 |
(1)計(jì)算表格中,,的值;
(2)為了了解成績在,分?jǐn)?shù)段學(xué)生的情況,先決定利用分層抽樣的方法從這兩個分?jǐn)?shù)段中抽取6人,再從這6人中隨機(jī)抽取2人進(jìn)行面談,求2人來自不同分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:經(jīng)過點(diǎn),A,B是拋物線C上異于點(diǎn)O的不同的兩點(diǎn),其中O為原點(diǎn).
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,與交于點(diǎn),若平面,.
(1)求證:;
(2)求二面角的大。
(3)求異面直線所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E,F分別是正方體的棱BC和CD的中點(diǎn),求:
(1)與EF所成角的大;
(2)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為2;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上頂點(diǎn),左、右頂點(diǎn)分別為、.直線且交橢圓于、兩點(diǎn),點(diǎn)E 關(guān)于軸的對稱點(diǎn)為點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com