【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式

(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)a=-2時(shí), ,f(x)的兩個(gè)零點(diǎn)分別為-1和1,通過(guò)零點(diǎn)分段法分別討論 ,去絕對(duì)值解不等式,最后取并集即可;

(Ⅱ)法一: 時(shí), ,化簡(jiǎn)f(x)為分段函數(shù),根據(jù)函數(shù)的單調(diào)性求出f(x)在 處取最小值3,進(jìn)而求出a值。法二:先放縮,再由絕對(duì)值三角不等式求出f(x)最小值,進(jìn)而求a。

() 時(shí),不等式為

①當(dāng) 時(shí),不等式化為,,此時(shí)

②當(dāng) 時(shí),不等式化為,

③當(dāng) 時(shí),不等式化為,此時(shí)

綜上所述,不等式的解集為

(Ⅱ)法一:函數(shù)f(x)=|2xa|+|x-1|,當(dāng)a<2,即時(shí),

所以f(x)minf)=-+1=3,得a=-4<2(符合題意),故a=-4.

法二:

所以,又,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù),若過(guò)的動(dòng)直線與曲線相交于兩點(diǎn)

(1)說(shuō)明曲線的形狀,并寫(xiě)出其標(biāo)準(zhǔn)方程;

(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。

A. 這15天日平均溫度的極差為

B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天

C. 由折線圖能預(yù)測(cè)16日溫度要低于

D. 由折線圖能預(yù)測(cè)本月溫度小于的天數(shù)少于溫度大于的天數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長(zhǎng)度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DC⊥平面ABC,,P、Q分別為AEAB的中點(diǎn).

(1)證明:平面.

(2)求異面直線所成角的余弦值;

(3)求平面與平面所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)

滿足,動(dòng)點(diǎn)的軌跡為.

1)求的方程;

2)過(guò)點(diǎn)作動(dòng)直線的平行線交軌跡兩點(diǎn),則是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)動(dòng)點(diǎn)的直線交軸的負(fù)半軸于點(diǎn),交C于點(diǎn)(在第一象限),且是線段的中點(diǎn),過(guò)點(diǎn)作x軸的垂線交C于另一點(diǎn),延長(zhǎng)線交C于點(diǎn).

(i)設(shè)直線,的斜率分別為,證明:;

(ii)求直線的斜率的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案